找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Normal 2-Coverings of the Finite Simple Groups and their Generalizations; Daniela Bubboloni,Pablo Spiga,Thomas Stefan Weigel Book 2024 The

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:35:49 | 只看該作者
Daniela Bubboloni,Pablo Spiga,Thomas Stefan WeigelProvides the first comprehensive classification of normal 2-coverings of non-abelian‘simple groups.The first reference book to collect and consolidate existing research on normal‘2-coverings and their
22#
發(fā)表于 2025-3-25 08:58:33 | 只看該作者
Introduction,ering number of the almost simple groups. Some applications: the invariably generating graph and the Aut-invariably generating graph; the Erd?s–Ko–Rado theorem and the derangement graph; the Boston–Shalev conjecture; normal 2-coverings for arbitrary finite groups; normal coverings and Kronecker classes.
23#
發(fā)表于 2025-3-25 12:32:24 | 只看該作者
Preliminaries,Normal and weak normal coverings of classical and simple classical groups; Huppert’s Theorem and Singer cycles; primitive prime divisors and .-elements; Bertrand elements; the spinor norm and the Bertrand elements.
24#
發(fā)表于 2025-3-25 18:45:03 | 只看該作者
Linear Groups,Weak normal 2-covering and normal coverings of linear groups.
25#
發(fā)表于 2025-3-25 21:36:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:16 | 只看該作者
Symplectic Groups,Weak normal 2-covering and normal coverings of symplectic groups.
27#
發(fā)表于 2025-3-26 05:21:17 | 只看該作者
28#
發(fā)表于 2025-3-26 11:13:50 | 只看該作者
Orthogonal Groups with Witt Defect 1,Weak normal 2-covering and normal coverings of orthogonal groups with Witt defect
29#
發(fā)表于 2025-3-26 15:28:57 | 只看該作者
Orthogonal Groups with Witt Defect 0,Weak normal 2-covering and normal coverings of orthogonal groups with Witt defect 0.
30#
發(fā)表于 2025-3-26 18:19:22 | 只看該作者
Proofs of the Main Theorems,Proofs of the main theorems of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 09:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄江县| 义马市| 千阳县| 辽宁省| 瑞金市| 南丹县| 安平县| 汉阴县| 闵行区| 汤阴县| 巫溪县| 通州区| 沁阳市| 三原县| 丽水市| 嫩江县| 林周县| 阿巴嘎旗| 奎屯市| 赤峰市| 石棉县| 方山县| 高要市| 康乐县| 建平县| 全南县| 宁强县| 灵武市| 芮城县| 姜堰市| 南漳县| 德庆县| 嘉善县| 来宾市| 东阿县| 周宁县| 正阳县| 兴国县| 灵寿县| 张家港市| 金寨县|