找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Normal 2-Coverings of the Finite Simple Groups and their Generalizations; Daniela Bubboloni,Pablo Spiga,Thomas Stefan Weigel Book 2024 The

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:35:49 | 只看該作者
Daniela Bubboloni,Pablo Spiga,Thomas Stefan WeigelProvides the first comprehensive classification of normal 2-coverings of non-abelian‘simple groups.The first reference book to collect and consolidate existing research on normal‘2-coverings and their
22#
發(fā)表于 2025-3-25 08:58:33 | 只看該作者
Introduction,ering number of the almost simple groups. Some applications: the invariably generating graph and the Aut-invariably generating graph; the Erd?s–Ko–Rado theorem and the derangement graph; the Boston–Shalev conjecture; normal 2-coverings for arbitrary finite groups; normal coverings and Kronecker classes.
23#
發(fā)表于 2025-3-25 12:32:24 | 只看該作者
Preliminaries,Normal and weak normal coverings of classical and simple classical groups; Huppert’s Theorem and Singer cycles; primitive prime divisors and .-elements; Bertrand elements; the spinor norm and the Bertrand elements.
24#
發(fā)表于 2025-3-25 18:45:03 | 只看該作者
Linear Groups,Weak normal 2-covering and normal coverings of linear groups.
25#
發(fā)表于 2025-3-25 21:36:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:16 | 只看該作者
Symplectic Groups,Weak normal 2-covering and normal coverings of symplectic groups.
27#
發(fā)表于 2025-3-26 05:21:17 | 只看該作者
28#
發(fā)表于 2025-3-26 11:13:50 | 只看該作者
Orthogonal Groups with Witt Defect 1,Weak normal 2-covering and normal coverings of orthogonal groups with Witt defect
29#
發(fā)表于 2025-3-26 15:28:57 | 只看該作者
Orthogonal Groups with Witt Defect 0,Weak normal 2-covering and normal coverings of orthogonal groups with Witt defect 0.
30#
發(fā)表于 2025-3-26 18:19:22 | 只看該作者
Proofs of the Main Theorems,Proofs of the main theorems of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸定县| 东阿县| 易门县| 邓州市| 芮城县| 祁门县| 晋州市| 兴国县| 娱乐| 尚义县| 灵川县| 乳山市| 安福县| 抚远县| 邢台县| 武城县| 丰台区| 石狮市| 曲麻莱县| 台南县| 汉中市| 闽侯县| 建宁县| 杭州市| 元阳县| 伊吾县| 昆山市| 通化市| 海城市| 赣榆县| 清远市| 鹤庆县| 九寨沟县| 南康市| 鹤壁市| 开平市| 宁城县| 吴桥县| 宝坻区| 湘西| 贵州省|