找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures; Leonid I. Manevitch,Agnessa Kovaleva,Yuli Starosve Book 2018 Spr

[復(fù)制鏈接]
查看: 11956|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:13:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures
編輯Leonid I. Manevitch,Agnessa Kovaleva,Yuli Starosve
視頻videohttp://file.papertrans.cn/668/667906/667906.mp4
概述Suggests a new common approach to the study of resonance energy transport based on the concept of Limiting Phase Trajectories.Discusses applications to significant nonlinear problems from different fi
叢書名稱Foundations of Engineering Mechanics
圖書封面Titlebook: Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures;  Leonid I. Manevitch,Agnessa Kovaleva,Yuli Starosve Book 2018 Spr
描述.This book suggests a new common approach to the study of resonance energy transport based on the recently developed concept of Limiting Phase Trajectories (LPTs), presenting ?applications of the approach to significant nonlinear problems from different fields of physics and mechanics. In order to highlight the novelty and perspectives of the developed approach, it places the LPT concept in the context of dynamical phenomena related to the energy transfer problems and applies the theory to numerous problems of practical importance. This approach leads to the conclusion that strongly nonstationary resonance processes in nonlinear oscillator arrays and nanostructures are characterized either by maximum possible energy exchange between the clusters of oscillators (coherence domains) or by maximum energy transfer from an external source of energy to the chain. The trajectories corresponding to these processes are referred to as LPTs. The development and the use of the LPTs concept a.re motivated by the fact that non-stationary processes in a broad variety of finite-dimensional physical models are beyond the well-known paradigm of nonlinear normal modes (NNMs), which is fully justified
出版日期Book 2018
關(guān)鍵詞Limiting Phase Trajectories; Nonlinear Oscillations; Resonance Energy Transport; Resonance Energy Excha
版次1
doihttps://doi.org/10.1007/978-981-10-4666-7
isbn_softcover978-981-13-5195-2
isbn_ebook978-981-10-4666-7Series ISSN 1612-1384 Series E-ISSN 1860-6237
issn_series 1612-1384
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures影響因子(影響力)




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures影響因子(影響力)學(xué)科排名




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures網(wǎng)絡(luò)公開度




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures被引頻次




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures被引頻次學(xué)科排名




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures年度引用




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures年度引用學(xué)科排名




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures讀者反饋




書目名稱Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:08 | 只看該作者
Emergence and Bifurcations of LPTs in the Chain of Three Coupled OscillatorsThe natural question is: How the LPT concept may be extended to the systems with more than two degrees of freedom? To answer this question, we consider first a simplest extension to the case of three weakly coupled identical oscillators.
板凳
發(fā)表于 2025-3-22 01:00:59 | 只看該作者
Quasi-One-Dimensional Nonlinear LatticesIn this section, it is shown how the LPT concept can be extended to finite-dimensional oscillatory chains. The systems under consideration are finite-dimensional analogues of several classical infinite models which were initially used for analysis of such significant physical phenomena as recurrent energy transfer and localization.
地板
發(fā)表于 2025-3-22 06:49:09 | 只看該作者
Localized Nonlinear Excitations and Inter-chain Energy ExchangeThe description of the nonlinear media in the framework of the quasi-one-dimensional models assumes the existence of the essential anisotropy of the media properties, for example, the considerable difference between coupling constants along and transversely the chains in the polymeric crystals.
5#
發(fā)表于 2025-3-22 09:27:54 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:43 | 只看該作者
7#
發(fā)表于 2025-3-22 17:10:17 | 只看該作者
Nonlinear Energy Channeling in the 2D, Locally Resonant, SystemsPassive control of the acoustic wave propagation in metamaterials is a subject of broad scientific and practical interest in various aspects of applied sciences and engineering.
8#
發(fā)表于 2025-3-23 00:43:44 | 只看該作者
Nonlinear Targeted Energy Transfer and Macroscopic Analogue of the Quantum Landau-Zener Effect in CoResonance is the main mechanism for energy propagation in spatially periodic linear/nonlinear systems. For the case of two weakly coupled identical Hamiltonian oscillators in resonance, any amount of energy imparted to one of the oscillators gets transferred back and forth between these oscillators with a frequency proportional to the coupling.
9#
發(fā)表于 2025-3-23 05:12:16 | 只看該作者
10#
發(fā)表于 2025-3-23 06:21:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东丰县| 陇西县| 阿勒泰市| 宁强县| 金阳县| 孝昌县| 焦作市| 宁波市| 湘潭县| 聊城市| 建德市| 临沧市| 怀化市| 永川市| 嘉善县| 佳木斯市| 秀山| 阿坝县| 通海县| 三台县| 互助| 桦川县| 马龙县| 道真| 广德县| 博罗县| 大兴区| 南康市| 江陵县| 邛崃市| 石首市| 贵溪市| 庆云县| 徐闻县| 日照市| 聂拉木县| 额济纳旗| 江源县| 富平县| 麻阳| 盐亭县|