找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonsmooth Mechanics of Solids; Jaroslav Haslinger,Georgios E. Stavroulakis Book 2006 CISM Udine 2006 Calculus of Variations.Extension.calc

[復(fù)制鏈接]
查看: 13525|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:42:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids
編輯Jaroslav Haslinger,Georgios E. Stavroulakis
視頻videohttp://file.papertrans.cn/668/667885/667885.mp4
叢書(shū)名稱(chēng)CISM International Centre for Mechanical Sciences
圖書(shū)封面Titlebook: Nonsmooth Mechanics of Solids;  Jaroslav Haslinger,Georgios E. Stavroulakis Book 2006 CISM Udine 2006 Calculus of Variations.Extension.calc
描述.Mechanics have played an important role in mathematics, from infinitesimal calculus, calculus of variations, partial differential equations and numerical methods (finite elements). Originally, mechanics treated smooth objects. Technological progress has evoked the necessity to model and solve more complicated problems, like unilateral contact and friction, plasticity, delamination and adhesion, advanced materials, etc. The new tools include convex analysis, differential calculus for convex functions, and subgradients of convex functions and extensions for nonconvex problems. Nonsmooth mechanics is a relatively complex field, and requires a good knowledge of mechanics and a good background in some parts of modern mathematics. The present volume of lecture notes follows a very successful advanced school, with the aim to cover as much as possible all these aspects. Therefore the contributions cover mechanical aspects as well as the mathematical and numerical treatment..
出版日期Book 2006
關(guān)鍵詞Calculus of Variations; Extension; calculus; computational mechanics; differential equation; finite eleme
版次1
doihttps://doi.org/10.1007/978-3-211-48243-8
isbn_softcover978-3-211-48241-4
isbn_ebook978-3-211-48243-8Series ISSN 0254-1971 Series E-ISSN 2309-3706
issn_series 0254-1971
copyrightCISM Udine 2006
The information of publication is updating

書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids影響因子(影響力)




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids被引頻次




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids被引頻次學(xué)科排名




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids年度引用




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids年度引用學(xué)科排名




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids讀者反饋




書(shū)目名稱(chēng)Nonsmooth Mechanics of Solids讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:41 | 只看該作者
地板
發(fā)表于 2025-3-22 04:42:10 | 只看該作者
5#
發(fā)表于 2025-3-22 12:35:41 | 只看該作者
6#
發(fā)表于 2025-3-22 13:44:38 | 只看該作者
Approximation of variational and hemivariational inequalities of elliptic type. Applications to conwith classical variational inequalities of the first and the second kind. Next we show how to approximate a class of inclusion problems called hemivariational inequalities with nonmonotone multivalued mappings. These results are then used for the approximation and the numerical realization of contact problems with different models of friction.
7#
發(fā)表于 2025-3-22 17:30:50 | 只看該作者
An Introduction to Impacts,mics are reviewed for planar frictional collisions and formulated in terms of set-valued maps and linear complementarity. For the frictionless case, a geometric concept based on kinematic, kinetic and energetic compatibility is developed, which provides access to non-standard impact events as in New
8#
發(fā)表于 2025-3-23 01:14:19 | 只看該作者
Approximation of variational and hemivariational inequalities of elliptic type. Applications to conwith classical variational inequalities of the first and the second kind. Next we show how to approximate a class of inclusion problems called hemivariational inequalities with nonmonotone multivalued mappings. These results are then used for the approximation and the numerical realization of contac
9#
發(fā)表于 2025-3-23 01:25:25 | 只看該作者
Semicoercive Hemivariational Inequalities, Regularization Methods, Applications on Mechanics,. First, problems defined on vector-valued function spaces are considered under unilateral growth conditions imposed on nonlinear parts by making use of the Galerkin method. Second, a minimax method relying on Chang’s version of Mountain Pass Theorem for locally Lipschitz functionals (.) is applied
10#
發(fā)表于 2025-3-23 09:17:52 | 只看該作者
Applied Nonsmooth Mechanics of Deformable Bodies,mputational mechanics, from the other side, are outlined. The arising problems are, in general, variational and hemivariational inequalities. A short discussion of suitable numerical algorithms for the approximation of their solution, in connection with finite element or boundary element techniques,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 秭归县| 洪泽县| 葵青区| 大足县| 建宁县| 静海县| 西林县| 洪泽县| 石柱| 恩平市| 福泉市| 永州市| 辽源市| 吴川市| 武山县| 顺昌县| 青神县| 古交市| 建湖县| 霸州市| 宿迁市| 金门县| 花垣县| 双流县| 石渠县| 汉川市| 崇左市| 永川市| 马公市| 崇文区| 香河县| 建水县| 班玛县| 洞口县| 漯河市| 榆树市| 共和县| 北安市| 沙雅县| 安达市|