找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Statistics for Stochastic Processes; Estimation and Predi D. Bosq Book 1998Latest edition Springer Science+Business Media New

[復(fù)制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 06:36:12 | 只看該作者
Lecture Notes in Statisticshttp://image.papertrans.cn/n/image/667837.jpg
22#
發(fā)表于 2025-3-25 09:06:59 | 只看該作者
23#
發(fā)表于 2025-3-25 12:53:01 | 只看該作者
24#
發(fā)表于 2025-3-25 19:16:06 | 只看該作者
Synopsis,Classically time series analysis has two purposes.One of these is to construct a model which fits the data and then to estimate the model’s parameters. The second object is to use the identified model for prediction.
25#
發(fā)表于 2025-3-25 20:51:36 | 只看該作者
Inequalities for mixing processes,In this chapter we present some inequalities for covariances, joint densities and partial sums of stochastic discrete time processes when dependence is measured by strong mixing coefficients. The main tool is coupling with independent random variables. Some limit theorems for mixing processes are given as applications.
26#
發(fā)表于 2025-3-26 02:11:45 | 只看該作者
Density estimation for discrete time processes,This chapter deals with nonparametric density estimation for sequences of correlated random variables.
27#
發(fā)表于 2025-3-26 06:19:55 | 只看該作者
Kernel density estimation for continuous time processes,In this chapter we investigate the problem of estimating density for continuous time processes when continuous or sampled data are available.
28#
發(fā)表于 2025-3-26 09:41:55 | 只看該作者
Regression estimation and prediction in continuous time,Despite its great importance in practice, nonparametric regression estimation in continuous time has not been much studied up to now. The current chapter is perhaps the first general work on that topic.
29#
發(fā)表于 2025-3-26 12:59:20 | 只看該作者
The local time density estimator,In this Chapter we use local time for constructing an unbiased estimator of density when continuous sample is available. This estimator appears to be natural since it is the density of empirical measure.
30#
發(fā)表于 2025-3-26 19:45:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥城市| 古蔺县| 滁州市| 庐江县| 普定县| 喀喇沁旗| 浮山县| 杭锦旗| 西峡县| 正安县| 治多县| 搜索| 永德县| 东辽县| 延吉市| 光泽县| 大余县| 齐齐哈尔市| 阿拉尔市| 永城市| 辛集市| 北流市| 文山县| 苏州市| 阿图什市| 宁德市| 成都市| 清水河县| 陆川县| 个旧市| 龙里县| 西吉县| 密山市| 于都县| 莱阳市| 岳阳市| 眉山市| 萨迦县| 闻喜县| 包头市| 铁岭市|