找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Statistics; 3rd ISNPS, Avignon, Patrice Bertail,Delphine Blanke,Eric Matzner-L?ber Conference proceedings 2018 Springer Natu

[復(fù)制鏈接]
樓主: McKinley
41#
發(fā)表于 2025-3-28 17:20:14 | 只看該作者
Matú? Maciakorates the author‘s signature "Proof-by-Picture" methodThe congruences of a lattice form the congruence lattice.? Over the last several decades, the study of congruence lattices has established itself as a large and important field with a great number of interesting and deep results, as well as many
42#
發(fā)表于 2025-3-28 22:31:16 | 只看該作者
43#
發(fā)表于 2025-3-28 23:25:54 | 只看該作者
44#
發(fā)表于 2025-3-29 03:40:28 | 只看該作者
S. Ghoshorates the author‘s signature "Proof-by-Picture" methodThe congruences of a lattice form the congruence lattice.? Over the last several decades, the study of congruence lattices has established itself as a large and important field with a great number of interesting and deep results, as well as many
45#
發(fā)表于 2025-3-29 09:32:10 | 只看該作者
Symmetrizing ,-nn and Mutual ,-nn Smoothers,lity of linear smoothers, one realizes that many of the well-known linear nonparametric regression smoothers are inadmissible because either the smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies outside the unit interval [0, 1]. The question answered in this chapter is how
46#
發(fā)表于 2025-3-29 12:26:40 | 只看該作者
47#
發(fā)表于 2025-3-29 19:20:04 | 只看該作者
48#
發(fā)表于 2025-3-29 22:17:47 | 只看該作者
49#
發(fā)表于 2025-3-30 00:41:40 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莒南县| 南木林县| 方正县| 蓝山县| 章丘市| 富川| 九龙坡区| 吴桥县| 建水县| 嘉兴市| 内江市| 新乡市| 昌吉市| 当涂县| 东丽区| 通江县| 酒泉市| 乌兰察布市| 乾安县| 怀集县| 湖南省| 乐昌市| 乐山市| 浮梁县| 金门县| 邯郸县| 高雄县| 锦屏县| 嘉兴市| 蒲城县| 临高县| 安义县| 千阳县| 涞水县| 宾阳县| 宾川县| 抚州市| 监利县| 房产| 扎鲁特旗| 镇宁|