找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Kernel Density Estimation and Its Computational Aspects; Artur Gramacki Book 2018 Springer International Publishing AG 2018

[復(fù)制鏈接]
樓主: infection
11#
發(fā)表于 2025-3-23 13:33:40 | 只看該作者
Introduction, capture only the important patterns, while filtering noise and ignoring the data structures that are deemed not relevant. The functions commonly referred to as filters can serve as examples of typical smoothers. In our treatment of the topic, we focus on one of the most well-known nonparametric smo
12#
發(fā)表于 2025-3-23 15:12:13 | 只看該作者
Nonparametric Density Estimation,. technique is briefly presented together with a description of its main drawbacks. To avoid the highlighted problems, at least to some extent, one might use a smart histogram modification known in the literature as an . (ASH). A simple example presented in this chapter shows its advantages over the
13#
發(fā)表于 2025-3-23 19:45:17 | 只看該作者
Kernel Density Estimation,r .. First, the most popular kernel types are presented together with a number of basic definitions both for uni- and multivariate cases and then a review of performance criteria is provided, starting with the univariate case and then extended to the general multivariate case. The subsequent part of
14#
發(fā)表于 2025-3-24 01:17:13 | 只看該作者
Bandwidth Selectors for Kernel Density Estimation, and moves on to an overview of the three major types of selectors (that is: . (ROT), . (CV) and . (PI) selectors). The next part of the chapter is devoted to describing these selectors in more detail, both for the uni- and multivariate cases. Finally, a few numerical examples are given. The chapter
15#
發(fā)表于 2025-3-24 03:22:21 | 只看該作者
16#
發(fā)表于 2025-3-24 10:30:27 | 只看該作者
,FPGA-Based Implementation of?a?Bandwidth Selection Algorithm,ithm. In contrast to the results presented in Chapter 5, this chapter describes a hardware-based method, which relies on utilizing the so-called . (FPGA). FPGA devices are not often used for purposes of implementing purely numerical algorithms. The proposed implementation can be seen as a preliminar
17#
發(fā)表于 2025-3-24 12:53:26 | 只看該作者
18#
發(fā)表于 2025-3-24 17:31:59 | 只看該作者
Bandwidth Selectors for Kernel Density Estimation,voted to describing these selectors in more detail, both for the uni- and multivariate cases. Finally, a few numerical examples are given. The chapter is rounded off with a short section on the computational issues related to bandwidth selectors.
19#
發(fā)表于 2025-3-24 21:27:56 | 只看該作者
2197-6503 its applications.Describes in detail computational-like pro.This book describes computational problems related to kernel density estimation?(KDE) – one of the most important and widely used data smoothing techniques. A?very detailed description of novel FFT-based algorithms for both KDE computation
20#
發(fā)表于 2025-3-25 01:07:37 | 只看該作者
Kernel Density Estimation, the chapter is devoted to an introduction of two important KDE extensions, namely . KDE and KDE with .. The notion of . (KDDE) is also presented. The final part of the chapter describes how KDE can be used for nonparametric estimation of . (CDF). The chapter ends with some notes on computational aspects related to KDE.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射阳县| 广德县| 庆安县| 梧州市| 靖西县| 大姚县| 乌拉特后旗| 大荔县| 滁州市| 太谷县| 仁布县| 隆尧县| 宣恩县| 海南省| 吉木乃县| 肥东县| 吉首市| 南昌县| 五河县| 昌江| 昂仁县| 噶尔县| 龙山县| 永顺县| 桃园县| 景谷| 新密市| 松桃| 海安县| 鹤壁市| 睢宁县| 巩留县| 会理县| 宽城| 桐柏县| 定兴县| 商城县| 六盘水市| 益阳市| 西充县| 上杭县|