找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Functional Estimation and Related Topics; George Roussas Book 1991 Springer Science+Business Media Dordrecht 1991 Estimator.

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:52:25 | 只看該作者
On the Nonparametric Estimation of the Entropy Functionalider the problem of estimating H(f) nonparametrically, based on a random sample X.,…,X. from the underlying density. Several methods to estimate H(f) have been put forward in the literature. Here, a new class of entropy estimators is considered. The common feature of these estimators is that they ar
22#
發(fā)表于 2025-3-25 07:52:40 | 只看該作者
Analysis of Samples of Curvessh to exploit the sample information. As a first goal, we want to estimate a valid average curve which reflects the individual-dynamic and intensity. To this end, we try to align individual curves such that similar events or structures take place at identical times: This can be achieved via individu
23#
發(fā)表于 2025-3-25 11:43:30 | 只看該作者
Bootstrap Methods in Nonparametric Regressionar construction. The bootstrap provides a simple-to-implement alternative to procedures based on asymptotic arguments. In this paper we give an overview over the various bootstrap techniques that have been used and proposed in nonparametric regression. The bootstrap has to be adapted to the models a
24#
發(fā)表于 2025-3-25 19:27:16 | 只看該作者
On the Influence Function of Maximum Penalized Likelihood Density Estimators.. It can explain some of the known behaviour of these estimates, e.g., their “bump-hunting” abilities. A study of the influence function suggests a larger class of estimators, which contains as special cases, both the kernel estimates and known MPLE’s. This is a two-parameter (p, h) class, where h i
25#
發(fā)表于 2025-3-25 23:53:11 | 只看該作者
26#
發(fā)表于 2025-3-26 04:00:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:54:08 | 只看該作者
Nonparametric Estimation of Elliptically Contoured Densitiese analyze the large sample behavior of a kernel-type estimator of f, when both the parametric component (μ.) as well as the nonparametric transfer function k are unknown. It turns out that the rate of convergence is independent of d.
28#
發(fā)表于 2025-3-26 11:46:04 | 只看該作者
Uniform Deconvolution: Nonparametric Maximum Likelihood and Inverse Estimationion ., we want to estimate . In this problem a maximum likelihood estimator of . can be derived, provided an extra support condition on . is satisfied. The problem can also be viewed as an inverse estimation problem. Since the transformation which maps the unknown distribution function . on the dist
29#
發(fā)表于 2025-3-26 15:11:28 | 只看該作者
30#
發(fā)表于 2025-3-26 19:02:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞水县| 馆陶县| 海原县| 布尔津县| 博客| 清河县| 敖汉旗| 左权县| 班玛县| 宜昌市| 邳州市| 三亚市| 大庆市| 宜川县| 沅陵县| 左贡县| 延津县| 宁陕县| 蓬安县| 延安市| 涞源县| 修文县| 阜平县| 张家川| 太和县| 韶关市| 清原| 南充市| 中江县| 六盘水市| 宜阳县| 玛曲县| 铁岭市| 台湾省| 噶尔县| 天柱县| 惠东县| 安多县| 四川省| 依安县| 广丰县|