找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Functional Estimation and Related Topics; George Roussas Book 1991 Springer Science+Business Media Dordrecht 1991 Estimator.

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:52:25 | 只看該作者
On the Nonparametric Estimation of the Entropy Functionalider the problem of estimating H(f) nonparametrically, based on a random sample X.,…,X. from the underlying density. Several methods to estimate H(f) have been put forward in the literature. Here, a new class of entropy estimators is considered. The common feature of these estimators is that they ar
22#
發(fā)表于 2025-3-25 07:52:40 | 只看該作者
Analysis of Samples of Curvessh to exploit the sample information. As a first goal, we want to estimate a valid average curve which reflects the individual-dynamic and intensity. To this end, we try to align individual curves such that similar events or structures take place at identical times: This can be achieved via individu
23#
發(fā)表于 2025-3-25 11:43:30 | 只看該作者
Bootstrap Methods in Nonparametric Regressionar construction. The bootstrap provides a simple-to-implement alternative to procedures based on asymptotic arguments. In this paper we give an overview over the various bootstrap techniques that have been used and proposed in nonparametric regression. The bootstrap has to be adapted to the models a
24#
發(fā)表于 2025-3-25 19:27:16 | 只看該作者
On the Influence Function of Maximum Penalized Likelihood Density Estimators.. It can explain some of the known behaviour of these estimates, e.g., their “bump-hunting” abilities. A study of the influence function suggests a larger class of estimators, which contains as special cases, both the kernel estimates and known MPLE’s. This is a two-parameter (p, h) class, where h i
25#
發(fā)表于 2025-3-25 23:53:11 | 只看該作者
26#
發(fā)表于 2025-3-26 04:00:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:54:08 | 只看該作者
Nonparametric Estimation of Elliptically Contoured Densitiese analyze the large sample behavior of a kernel-type estimator of f, when both the parametric component (μ.) as well as the nonparametric transfer function k are unknown. It turns out that the rate of convergence is independent of d.
28#
發(fā)表于 2025-3-26 11:46:04 | 只看該作者
Uniform Deconvolution: Nonparametric Maximum Likelihood and Inverse Estimationion ., we want to estimate . In this problem a maximum likelihood estimator of . can be derived, provided an extra support condition on . is satisfied. The problem can also be viewed as an inverse estimation problem. Since the transformation which maps the unknown distribution function . on the dist
29#
發(fā)表于 2025-3-26 15:11:28 | 只看該作者
30#
發(fā)表于 2025-3-26 19:02:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅陵县| 玛纳斯县| 台安县| 峨眉山市| 富源县| 紫金县| 孝昌县| 阿巴嘎旗| 富宁县| 大连市| 上杭县| 宁河县| 崇阳县| 康马县| 科技| 岳西县| 宣恩县| 莱芜市| 普兰县| 雅安市| 通渭县| 淮滨县| 江门市| 大埔县| 天等县| 文登市| 宣城市| 杨浦区| 红桥区| 晋州市| 花垣县| 襄樊市| 隆安县| 安仁县| 鹰潭市| 岢岚县| 蒙自县| 东光县| 临安市| 大方县| 翁牛特旗|