找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonparametric Bayesian Inference in Biostatistics; Riten Mitra,Peter Müller Book 2015 Springer International Publishing Switzerland 2015 B

[復制鏈接]
查看: 17426|回復: 54
樓主
發(fā)表于 2025-3-21 16:18:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nonparametric Bayesian Inference in Biostatistics
編輯Riten Mitra,Peter Müller
視頻videohttp://file.papertrans.cn/668/667816/667816.mp4
概述First comprehensive review of a fast growing field.Accessible to readers with a working graduate level knowledge of statistics and interest in Bayesian inference and biomedical applications.Most chapt
叢書名稱Frontiers in Probability and the Statistical Sciences
圖書封面Titlebook: Nonparametric Bayesian Inference in Biostatistics;  Riten Mitra,Peter Müller Book 2015 Springer International Publishing Switzerland 2015 B
描述As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book‘s expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP‘s potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve..?.
出版日期Book 2015
關(guān)鍵詞Biostatistical inference; Clinical sciences; Genomics / proteomics; Nonparametric Bayesian (BNP) approa
版次1
doihttps://doi.org/10.1007/978-3-319-19518-6
isbn_softcover978-3-319-36817-7
isbn_ebook978-3-319-19518-6Series ISSN 2624-9987 Series E-ISSN 2624-9995
issn_series 2624-9987
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Nonparametric Bayesian Inference in Biostatistics影響因子(影響力)




書目名稱Nonparametric Bayesian Inference in Biostatistics影響因子(影響力)學科排名




書目名稱Nonparametric Bayesian Inference in Biostatistics網(wǎng)絡(luò)公開度




書目名稱Nonparametric Bayesian Inference in Biostatistics網(wǎng)絡(luò)公開度學科排名




書目名稱Nonparametric Bayesian Inference in Biostatistics被引頻次




書目名稱Nonparametric Bayesian Inference in Biostatistics被引頻次學科排名




書目名稱Nonparametric Bayesian Inference in Biostatistics年度引用




書目名稱Nonparametric Bayesian Inference in Biostatistics年度引用學科排名




書目名稱Nonparametric Bayesian Inference in Biostatistics讀者反饋




書目名稱Nonparametric Bayesian Inference in Biostatistics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:18 | 只看該作者
Bayesian Nonparametric Biostatisticsntribute to addressing some fundamental questions that arise in biomedical research. In particular, we review some modern Bayesian semi- and nonparametric approaches for modeling longitudinal, survival, and medical diagnostic outcome data. Our discussion includes methods for longitudinal data analys
板凳
發(fā)表于 2025-3-22 00:54:58 | 只看該作者
Bayesian Shape Clusteringages. Existing model-based clustering techniques rely on simple probability models that are not generally valid for analyzing shapes of curves. In this chapter, we talk about an efficient Bayesian method to cluster curve data using a carefully chosen metric on the shape space. Rather than modeling t
地板
發(fā)表于 2025-3-22 05:09:09 | 只看該作者
Estimating Latent Cell Subpopulations with Bayesian Feature Allocation Modelsd by mutations in sequence and structure at various genomic locations. Using next-generation sequencing data, we characterize tumor heterogeneity using Bayesian nonparametric inference. Specifically, we estimate the number of subclones in a tumor sample, and for each subclone, we estimate the subclo
5#
發(fā)表于 2025-3-22 09:39:22 | 只看該作者
Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Abernparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, common exchangeability assumptions may not be appropriate. We discuss a generalization of species sampling sequences, where the weights in the predictive probability functions
6#
發(fā)表于 2025-3-22 13:21:45 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:06 | 只看該作者
Bayesian Inference on Population Structure: From Parametric to Nonparametric Modeling. The source populations are assumed to be in Hardy-Weinberg equilibrium, but the allelic frequencies of these populations and even the number of populations present in a sample are unknown. In this chapter we present a review of some Bayesian parametric and nonparametric models for making inference
8#
發(fā)表于 2025-3-22 21:41:54 | 只看該作者
Bayesian Approaches for Large Biological Networksression data. Methods that employ sparse priors have been particularly successful, as they are properly designed to analyze large datasets in which the amount of measured variables can be greater than the number of observations. Here, we describe Bayesian approaches for both undirected and directed
9#
發(fā)表于 2025-3-23 02:09:25 | 只看該作者
Nonparametric Variable Selection, Clustering and Prediction for Large Biological Datasets due to relatively small sample sizes and the presence of complex interaction patterns between a large number of covariates. We propose an efficient, nonparametric framework for simultaneous variable selection, clustering and prediction in high-throughput regression settings with continuous outcomes
10#
發(fā)表于 2025-3-23 06:23:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马鞍山市| 法库县| 应城市| 时尚| 崇礼县| 华宁县| 东方市| 沁阳市| 黄平县| 威宁| 博兴县| 巫山县| 宾阳县| 金秀| 竹北市| 兴海县| 噶尔县| 镇康县| 驻马店市| 汝州市| 晴隆县| 丹巴县| 伊川县| 深泽县| 吉木萨尔县| 夏河县| 揭西县| 旬邑县| 金寨县| 平谷区| 江津市| 义乌市| 唐山市| 潢川县| 昌江| 徐水县| 白银市| 华容县| 开原市| 忻城县| 台北县|