找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal and Fractional Operators; Luisa Beghin,Francesco Mainardi,Roberto Garrappa Book 2021 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:58:55 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:34 | 只看該作者
On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinaryy are isomorphisms between the corresponding Sobolev space of order . and the .-space. On the basis of such fractional derivatives, we formulate initial value problems for time fractional ordinary differential equations and prove the well-posedness.
43#
發(fā)表于 2025-3-29 02:23:00 | 只看該作者
44#
發(fā)表于 2025-3-29 06:45:56 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:36 | 只看該作者
The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles,n. The Pearcey equation can be considered as a . to relativity since it embeds the peculiar features of the relativistic evolution even if it looks very similar to the Schr?dinger equation. In light of the catastrophe theory, the Pearcey equation acquires a deeper physical meaning as a candidate for describing quasiparticles.
46#
發(fā)表于 2025-3-29 13:33:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:51 | 只看該作者
48#
發(fā)表于 2025-3-29 22:24:27 | 只看該作者
,Sinc Methods for Lévy–Schr?dinger Equations,that only for skewness parameters . the eigenvalues are real quantities and thus relevant in quantum mechanics. However, for skewness parameters ., the Sinc approach yields complex eigenvalues with related complex eigenfunctions, and a fortiori, real probability densities.
49#
發(fā)表于 2025-3-30 03:01:18 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察雅县| 梁河县| 江川县| 南阳市| 天峨县| 富锦市| 綦江县| 大埔区| 镇坪县| 丰镇市| 盘山县| 岑溪市| 邮箱| 佛山市| 边坝县| 兰坪| 惠水县| 达日县| 额尔古纳市| 饶平县| 邓州市| 海城市| 惠水县| 讷河市| 石景山区| 射洪县| 南宫市| 龙南县| 霍邱县| 勐海县| 汾西县| 内黄县| 原平市| 永年县| 南开区| 改则县| 咸丰县| 米易县| 安阳县| 吴江市| 岳阳市|