找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal and Fractional Operators; Luisa Beghin,Francesco Mainardi,Roberto Garrappa Book 2021 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:58:55 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:34 | 只看該作者
On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinaryy are isomorphisms between the corresponding Sobolev space of order . and the .-space. On the basis of such fractional derivatives, we formulate initial value problems for time fractional ordinary differential equations and prove the well-posedness.
43#
發(fā)表于 2025-3-29 02:23:00 | 只看該作者
44#
發(fā)表于 2025-3-29 06:45:56 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:36 | 只看該作者
The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles,n. The Pearcey equation can be considered as a . to relativity since it embeds the peculiar features of the relativistic evolution even if it looks very similar to the Schr?dinger equation. In light of the catastrophe theory, the Pearcey equation acquires a deeper physical meaning as a candidate for describing quasiparticles.
46#
發(fā)表于 2025-3-29 13:33:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:51 | 只看該作者
48#
發(fā)表于 2025-3-29 22:24:27 | 只看該作者
,Sinc Methods for Lévy–Schr?dinger Equations,that only for skewness parameters . the eigenvalues are real quantities and thus relevant in quantum mechanics. However, for skewness parameters ., the Sinc approach yields complex eigenvalues with related complex eigenfunctions, and a fortiori, real probability densities.
49#
發(fā)表于 2025-3-30 03:01:18 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
手机| 定安县| 会宁县| 木兰县| 惠水县| 上思县| 遂昌县| 微博| 重庆市| 沾化县| 宣武区| 增城市| 乌拉特前旗| 松溪县| 亚东县| 泰安市| 敦煌市| 廉江市| 阿克苏市| 扶沟县| 盐山县| 彭州市| 娄烦县| 九江县| 淳化县| 友谊县| 平潭县| 屏山县| 泽库县| 社会| 柳林县| 如皋市| 含山县| 宜阳县| 上思县| 虞城县| 锦屏县| 志丹县| 共和县| 水富县| 永登县|