找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal and Fractional Operators; Luisa Beghin,Francesco Mainardi,Roberto Garrappa Book 2021 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:58:55 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:34 | 只看該作者
On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinaryy are isomorphisms between the corresponding Sobolev space of order . and the .-space. On the basis of such fractional derivatives, we formulate initial value problems for time fractional ordinary differential equations and prove the well-posedness.
43#
發(fā)表于 2025-3-29 02:23:00 | 只看該作者
44#
發(fā)表于 2025-3-29 06:45:56 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:36 | 只看該作者
The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles,n. The Pearcey equation can be considered as a . to relativity since it embeds the peculiar features of the relativistic evolution even if it looks very similar to the Schr?dinger equation. In light of the catastrophe theory, the Pearcey equation acquires a deeper physical meaning as a candidate for describing quasiparticles.
46#
發(fā)表于 2025-3-29 13:33:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:51 | 只看該作者
48#
發(fā)表于 2025-3-29 22:24:27 | 只看該作者
,Sinc Methods for Lévy–Schr?dinger Equations,that only for skewness parameters . the eigenvalues are real quantities and thus relevant in quantum mechanics. However, for skewness parameters ., the Sinc approach yields complex eigenvalues with related complex eigenfunctions, and a fortiori, real probability densities.
49#
發(fā)表于 2025-3-30 03:01:18 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嵊州市| 永春县| 八宿县| 湖南省| 新乡市| 乌兰浩特市| 溧阳市| 鸡东县| 九寨沟县| 城口县| 吴江市| 临颍县| 芮城县| 井陉县| 黔西| 库尔勒市| 武威市| 宁国市| 赫章县| 平邑县| 万盛区| 白朗县| 卓资县| 于田县| 营口市| 沅江市| 金沙县| 宜都市| 高州市| 神农架林区| 阜新市| 姜堰市| 滨州市| 舞阳县| 沈阳市| 安宁市| 边坝县| 泰和县| 郴州市| 常山县| 桓台县|