找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal and Fractional Operators; Luisa Beghin,Francesco Mainardi,Roberto Garrappa Book 2021 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:58:55 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:34 | 只看該作者
On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinaryy are isomorphisms between the corresponding Sobolev space of order . and the .-space. On the basis of such fractional derivatives, we formulate initial value problems for time fractional ordinary differential equations and prove the well-posedness.
43#
發(fā)表于 2025-3-29 02:23:00 | 只看該作者
44#
發(fā)表于 2025-3-29 06:45:56 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:36 | 只看該作者
The Pearcey Equation: From the Salpeter Relativistic Equation to Quasiparticles,n. The Pearcey equation can be considered as a . to relativity since it embeds the peculiar features of the relativistic evolution even if it looks very similar to the Schr?dinger equation. In light of the catastrophe theory, the Pearcey equation acquires a deeper physical meaning as a candidate for describing quasiparticles.
46#
發(fā)表于 2025-3-29 13:33:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:51 | 只看該作者
48#
發(fā)表于 2025-3-29 22:24:27 | 只看該作者
,Sinc Methods for Lévy–Schr?dinger Equations,that only for skewness parameters . the eigenvalues are real quantities and thus relevant in quantum mechanics. However, for skewness parameters ., the Sinc approach yields complex eigenvalues with related complex eigenfunctions, and a fortiori, real probability densities.
49#
發(fā)表于 2025-3-30 03:01:18 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫阳县| 资溪县| 博野县| 朝阳县| 吐鲁番市| 高州市| 克山县| 台南县| 大洼县| 东乡县| 栾川县| 攀枝花市| 都江堰市| 内乡县| 博白县| 梁河县| 伊宁县| 唐山市| 福海县| 新河县| 迭部县| 武胜县| 汕尾市| 台州市| 永顺县| 景德镇市| 登封市| 灵丘县| 新津县| 邛崃市| 额济纳旗| 泾阳县| 调兵山市| 科技| 洛阳市| 乐陵市| 论坛| 伊金霍洛旗| 井研县| 娱乐| 观塘区|