找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets; José M. Mazón,Julio Daniel Rossi,J. Julián Toledo Book 2019 Spring

[復(fù)制鏈接]
查看: 15983|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:23:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets
編輯José M. Mazón,Julio Daniel Rossi,J. Julián Toledo
視頻videohttp://file.papertrans.cn/668/667799/667799.mp4
概述Contains the first systematic presentation of nonlocal curvature and perimeter for measurable sets.With applications to minimal surfaces.Nonlocal heat content is also studied
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets;  José M. Mazón,Julio Daniel Rossi,J. Julián Toledo Book 2019 Spring
描述.This book highlights the latest developments in the geometry of measurable sets, presenting them in simple, straightforward terms. It addresses nonlocal notions of perimeter and curvature and studies in detail the minimal surfaces associated with them.?.These notions of nonlocal perimeter and curvature are defined on the basis of a non-singular kernel. Further, when the kernel is appropriately rescaled, they converge toward the classical perimeter and curvature as the rescaling parameter tends to zero. In this way, the usual notions can be recovered by using the nonlocal ones. In addition, nonlocal heat content is studied and an asymptotic expansion is obtained.?.Given its scope, the book is intended for undergraduate and graduate students, as well as senior researchers interested in analysis and/or geometry..
出版日期Book 2019
關(guān)鍵詞sets of finite perimeter; nonlocal operators; cheeger sets; calibrable sets; heat content; nonlocal evolu
版次1
doihttps://doi.org/10.1007/978-3-030-06243-9
isbn_softcover978-3-030-06242-2
isbn_ebook978-3-030-06243-9Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets影響因子(影響力)




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets影響因子(影響力)學(xué)科排名




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets網(wǎng)絡(luò)公開度




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets被引頻次




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets被引頻次學(xué)科排名




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets年度引用




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets年度引用學(xué)科排名




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets讀者反饋




書目名稱Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:37:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:49:20 | 只看該作者
https://doi.org/10.1007/978-3-030-06243-9sets of finite perimeter; nonlocal operators; cheeger sets; calibrable sets; heat content; nonlocal evolu
地板
發(fā)表于 2025-3-22 05:17:15 | 只看該作者
5#
發(fā)表于 2025-3-22 11:51:59 | 只看該作者
978-3-030-06242-2Springer Nature Switzerland AG 2019
6#
發(fā)表于 2025-3-22 14:04:56 | 只看該作者
Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets978-3-030-06243-9Series ISSN 1660-8046 Series E-ISSN 1660-8054
7#
發(fā)表于 2025-3-22 21:07:35 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:25 | 只看該作者
9#
發(fā)表于 2025-3-23 04:38:53 | 只看該作者
10#
發(fā)表于 2025-3-23 08:52:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新营市| 永泰县| 东乌珠穆沁旗| 德江县| 康乐县| 曲周县| 黄石市| 原平市| 冷水江市| 金塔县| 宁乡县| 东至县| 金山区| 涡阳县| 克拉玛依市| 望都县| 页游| 察隅县| 茶陵县| 军事| 丹江口市| 黔西县| 霍城县| 新沂市| 阳东县| 鹿泉市| 仙桃市| 镇远县| 乌拉特中旗| 伊吾县| 图们市| 綦江县| 囊谦县| 天津市| 柳河县| 苍南县| 淳安县| 龙井市| 保亭| 天全县| 田东县|