找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinearity: Ordinary and Fractional Approximations by Sublinear and Max-Product Operators; George A. Anastassiou Book 2018 Springer Inte

[復(fù)制鏈接]
樓主: probiotic
41#
發(fā)表于 2025-3-28 15:57:45 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:25 | 只看該作者
George A. Anastassioulever Hans has finally dissipated. Not only have the types of tasks expanded, but the number of species, particularly those outside the mammalian order, is beginning to become more diverse. The primate order has been well represented, including studies with capuchin monkeys (Judge, Evans and Vyas, 2
43#
發(fā)表于 2025-3-28 23:07:03 | 只看該作者
44#
發(fā)表于 2025-3-29 06:54:17 | 只看該作者
45#
發(fā)表于 2025-3-29 10:42:42 | 只看該作者
Approximation by Positive Sublinear Operators,er initial conditions. We apply these to a series of well-known Max-product operators. So our approach is quantitative by producing inequalities with their right hand sides involving the modulus of continuity of a high order derivative of the function under approximation. It follows Anastassiou, Cor
46#
發(fā)表于 2025-3-29 13:30:06 | 只看該作者
47#
發(fā)表于 2025-3-29 18:43:58 | 只看該作者
Conformable Fractional Approximations Using Max-Product Operators,ive sublinear operators. Our study is based on our general results about positive sublinear operators. We produce Jackson type inequalities under conformable fractional initial conditions. So our approach is quantitative by producing inequalities with their right hand sides involving the modulus of
48#
發(fā)表于 2025-3-29 23:32:35 | 只看該作者
49#
發(fā)表于 2025-3-30 00:34:52 | 只看該作者
Canavati Fractional Approximations Using Max-Product Operators,ati fractional differentiability. Our approach is based on our general fractional results about positive sublinear operators. We derive Jackson type inequalities under simple initial conditions. So our way is quantitative by producing inequalities with their right hand sides involving the modulus of
50#
發(fā)表于 2025-3-30 06:00:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临安市| 黄大仙区| 陇南市| 咸宁市| 武宣县| 铁岭县| 仁布县| 东莞市| 宁强县| 准格尔旗| 图木舒克市| 广州市| 赤水市| 通许县| 平昌县| 陇南市| 富阳市| 灵寿县| 监利县| 封丘县| 抚松县| 和田市| 武定县| 广安市| 松江区| 惠安县| 邯郸县| 海宁市| 苍山县| 阿拉尔市| 威海市| 九龙县| 万荣县| 广饶县| 额尔古纳市| 达拉特旗| 和龙市| 永新县| 新平| 秦皇岛市| 临城县|