找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Waves: Classical and Quantum Aspects; Fatkhulla Kh. Abdullaev,Vladimir V. Konotop Conference proceedings 2004 Springer Science+B

[復(fù)制鏈接]
樓主: 斷巖
31#
發(fā)表于 2025-3-26 21:29:47 | 只看該作者
cation, they remain important national universities. Moreover, as the plethora of so-called world-class higher education league tables would have us believe, they also have a powerful international status. This, however, is essentially a defensive response dependent upon the alleged reputations of t
32#
發(fā)表于 2025-3-27 04:44:26 | 只看該作者
Miki Wadati,Go Kato,Toshiaki Iidacation, they remain important national universities. Moreover, as the plethora of so-called world-class higher education league tables would have us believe, they also have a powerful international status. This, however, is essentially a defensive response dependent upon the alleged reputations of t
33#
發(fā)表于 2025-3-27 07:22:14 | 只看該作者
Stochastic Effects on the Eckhaus EquationThe random-force driven Eckhaus equation is studied in the case of a long range correlated noise. The ensemble average of the Kink solution is obtained, and some relevant correlation functions are obtained.
34#
發(fā)表于 2025-3-27 13:30:13 | 只看該作者
Scattering of NLS Solitons with Bound Quantum StatesInelastic collision between NLS3 solitons and bound quantum states in strong localized one-dimensional potentials are investigated.
35#
發(fā)表于 2025-3-27 14:51:08 | 只看該作者
978-1-4020-2189-3Springer Science+Business Media B.V. 2004
36#
發(fā)表于 2025-3-27 18:31:22 | 只看該作者
37#
發(fā)表于 2025-3-28 01:07:56 | 只看該作者
38#
發(fā)表于 2025-3-28 05:30:41 | 只看該作者
Solutions of the Logarithmic Schr?dinger Equation in a Rotating Harmonic Trap analytic solutions, we have chosen the logarithmic nonlinearity. The unexpected result of our study is the existence in the presence of nonlinearity of two or even three coexisting Gaussian solutions.
39#
發(fā)表于 2025-3-28 07:42:08 | 只看該作者
40#
發(fā)表于 2025-3-28 10:58:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
勃利县| 景洪市| 海原县| 体育| 高青县| 黔西| 株洲市| 唐海县| 和顺县| 绥德县| 从化市| 乐亭县| 霍山县| 楚雄市| 蛟河市| 吉林省| 上虞市| 济源市| 东乡| 水城县| 邹平县| 玉环县| 上高县| 靖边县| 藁城市| 淮南市| 彭水| 南充市| 阿鲁科尔沁旗| 环江| 固镇县| 南城县| 湄潭县| 南靖县| 新乐市| 临沧市| 准格尔旗| 瑞昌市| 疏勒县| 柯坪县| 桃江县|