找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Water Waves; IUTAM Symposium, Tok Kiyoshi Horikawa,Hajime Maruo Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 1

[復(fù)制鏈接]
查看: 19300|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:05:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Nonlinear Water Waves
副標題IUTAM Symposium, Tok
編輯Kiyoshi Horikawa,Hajime Maruo
視頻videohttp://file.papertrans.cn/668/667744/667744.mp4
叢書名稱IUTAM Symposia
圖書封面Titlebook: Nonlinear Water Waves; IUTAM Symposium, Tok Kiyoshi Horikawa,Hajime Maruo Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 1
描述Non-linear behaviour of water waves has recently drawn much attention of scientists and engineers in the fields of oceanography, applied mathematics, coastal engineering, ocean engineering, naval architecture, and others. The IUTAM Symposium on Non-linear Water Waves was organized with the aim of bringing together researchers who are actively studying non-linear water waves from various viewpoints. The papers contained in this book are related to the generation and deformation of non-linear water waves and the non-linear interaction between waves and bodies. That is, various types of non-linear water waves were analyzed on the basis of various well-known equations, experimental studies on breaking waves were presented, and numerical studies of calculating second-order non-linear wave-body interaction were proposed.
出版日期Conference proceedings 1988
關(guān)鍵詞Natur; Profil; Soliton; applied mathematics; dynamics; mathematics; model; modeling; numerical analysis; simu
版次1
doihttps://doi.org/10.1007/978-3-642-83331-1
isbn_softcover978-3-642-83333-5
isbn_ebook978-3-642-83331-1
copyrightSpringer-Verlag, Berlin, Heidelberg 1988
The information of publication is updating

書目名稱Nonlinear Water Waves影響因子(影響力)




書目名稱Nonlinear Water Waves影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Water Waves網(wǎng)絡(luò)公開度




書目名稱Nonlinear Water Waves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Water Waves被引頻次




書目名稱Nonlinear Water Waves被引頻次學(xué)科排名




書目名稱Nonlinear Water Waves年度引用




書目名稱Nonlinear Water Waves年度引用學(xué)科排名




書目名稱Nonlinear Water Waves讀者反饋




書目名稱Nonlinear Water Waves讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:29 | 只看該作者
Recent Developments in the Modelling of Unsteady and Breaking Water Wavesuation for irrotational flow was used together with time marching of the position and velocity potential of surface particles using the free surface boundary conditions. Most subsequent work uses boundary integral formulations. Marker and cell (MAC) methods have also been used to a lesser extent; ho
板凳
發(fā)表于 2025-3-22 03:15:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:06 | 只看該作者
5#
發(fā)表于 2025-3-22 10:03:41 | 只看該作者
On the Initial Evolution of Gravity-Capillary Wavese SAR, that can provide information about surface waves with a wavelength of the order of 4–40 cm, i.e. in the gravity-capillary range. It was thus found that in shallow waters these waves experience a strong modulation in the presence of a non-uniform current and a varying bottom topography. (see e
6#
發(fā)表于 2025-3-22 13:12:51 | 只看該作者
Nonlinear Forced Water Waves in a Shallow Channel near a Cut-off Frequencychannel near a cut-off frequency. It is shown, through a perturbation analysis using characteristic variables, that the nonlinear response is governed by a forced Kadomtsev-Petviashvili (KP) equation with periodic boundary conditions across the channel; this nonlinear initial-boundary-value problem
7#
發(fā)表于 2025-3-22 18:44:31 | 只看該作者
8#
發(fā)表于 2025-3-23 01:08:01 | 只看該作者
Asymptotic Behavior of a Shallow-Water Soliton Reflected at a Sloping Beachhown that the boundary-value problem for the Boussinesq equation under the “reduced” boundary condition is simplified to an “initial value” problem for the Korteweg-de Vries equation in the form of the spatial evolution of the reflected wave. Solving it numerically, the asymptotic behavior is demons
9#
發(fā)表于 2025-3-23 02:58:05 | 只看該作者
Normal Form and Solitons in the Shallow Water Wavesnsion. The KdV equation admits a family of solitary waves called solitons having the remarkable property that the result of interaction of solitons leaves their shape unaltered, except a phase shift. This elastic interaction is due to the fact that the KdV equation possesses an infinite number of co
10#
發(fā)表于 2025-3-23 07:04:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德县| 泸溪县| 京山县| 青神县| 通辽市| 江源县| 宁德市| 蒙自县| 平和县| 阳山县| 柳江县| 彰化县| 来凤县| 乐陵市| 凭祥市| 雅江县| 略阳县| 萨嘎县| 仲巴县| 普宁市| 额济纳旗| 永德县| 稻城县| 余姚市| 二连浩特市| 普陀区| 金山区| 宜兰市| 寻乌县| 应城市| 嘉祥县| 同江市| 南通市| 财经| 桦川县| 罗平县| 溆浦县| 民和| 商南县| 微博| 通州区|