找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Systems, Vol. 1; Mathematical Theory Victoriano Carmona,Jesús Cuevas-Maraver,Elisabeth Book 2018 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 8895|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:30:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Systems, Vol. 1
副標(biāo)題Mathematical Theory
編輯Victoriano Carmona,Jesús Cuevas-Maraver,Elisabeth
視頻videohttp://file.papertrans.cn/668/667723/667723.mp4
概述Presents a unified view of nonlinear properties in several models from different scientific fields.Includes a review of the theoretical state of the art in the study of dynamical systems.Analyzes seve
叢書名稱Understanding Complex Systems
圖書封面Titlebook: Nonlinear Systems, Vol. 1; Mathematical Theory  Victoriano Carmona,Jesús Cuevas-Maraver,Elisabeth  Book 2018 Springer Nature Switzerland AG
描述.This book is part of a two volume set which presents the analysis of nonlinear phenomena as a long-standing challenge for research in basic and applied science as well as engineering. It discusses nonlinear differential and differential equations, bifurcation theory for periodic orbits and global connections. The integrability and reversibility of planar vector fields and theoretical analysis of classic physical models are sketched..This first volume concentrates on the mathematical theory and computational techniques that are essential for the study of nonlinear science, a second volume deals with real-world nonlinear phenomena in condensed matter, biology and optics..
出版日期Book 2018
關(guān)鍵詞Nonlinear Differential and Difference Equations; Normal Forms for Planar Systems; Local and Global Bif
版次1
doihttps://doi.org/10.1007/978-3-319-66766-9
isbn_softcover978-3-030-09781-3
isbn_ebook978-3-319-66766-9Series ISSN 1860-0832 Series E-ISSN 1860-0840
issn_series 1860-0832
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Nonlinear Systems, Vol. 1影響因子(影響力)




書目名稱Nonlinear Systems, Vol. 1影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Systems, Vol. 1網(wǎng)絡(luò)公開度




書目名稱Nonlinear Systems, Vol. 1網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Systems, Vol. 1被引頻次




書目名稱Nonlinear Systems, Vol. 1被引頻次學(xué)科排名




書目名稱Nonlinear Systems, Vol. 1年度引用




書目名稱Nonlinear Systems, Vol. 1年度引用學(xué)科排名




書目名稱Nonlinear Systems, Vol. 1讀者反饋




書目名稱Nonlinear Systems, Vol. 1讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:50 | 只看該作者
Normal Form for a Class of Three-Dimensional Systems with Free-Divergence Principal Part the principal part of the vector field. We focus on a class of tridimensional systems whose principal part is the coupling of a Hamiltonian planar system and an unidimensional system, in such a way that the quoted principal part does not depend on the last variable and has free divergence. Our stud
板凳
發(fā)表于 2025-3-22 00:55:23 | 只看該作者
Piecewise-Linear (PWL) Canard Dynamics . (one slow and one fast variables) and . (two slow and one fast variables), we prove the existence of (maximal) canard solutions and show that the main salient features from smooth systems is preserved. We also highlight how the PWL setup carries a level of simplification of singular perturbation
地板
發(fā)表于 2025-3-22 07:16:57 | 只看該作者
Solitary Waves in the Nonlinear Dirac Equation Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subseque
5#
發(fā)表于 2025-3-22 11:15:07 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:53 | 只看該作者
Adiabatic Invariants of Second Order Korteweg-de Vries Type Equationer equations for shallow water are extended to the second order, beyond Korteweg-de Vries (KdV). We show that contrary to KdV for which there is an infinite number of invariants, for KdV2 there exists only one, connected to mass (volume) conservation of the fluid. For KdV2 we found only so-called .,
7#
發(fā)表于 2025-3-22 20:51:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:55 | 只看該作者
9#
發(fā)表于 2025-3-23 04:07:31 | 只看該作者
A Logistic Non-linear Difference Equation with Two Delaysations with respect to seasons in time .. Of special interest are those non-linear equations with two delays, particularly due to the effect of food in the evolution of the population. As an adequate tool to understand the behaviors of solutions of the equation, we use an unfolding of it obtaining a
10#
發(fā)表于 2025-3-23 06:29:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 新宁县| 汕头市| 呼图壁县| 剑河县| 苏州市| 清苑县| 久治县| 大洼县| 金坛市| 娄烦县| 昌平区| 额尔古纳市| 太湖县| 剑河县| 开江县| 太白县| 都安| 哈密市| 宜宾市| 内丘县| 象山县| 临漳县| 新河县| 贡嘎县| 弥勒县| 炉霍县| 西峡县| 康平县| 和政县| 卫辉市| 包头市| 武定县| 仪陇县| 中西区| 济阳县| 高陵县| 达日县| 太仆寺旗| 宜宾市| 宜良县|