找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Systems of Fractional Differential Equations; Bashir Ahmad,Sotiris K. Ntouyas Book 2024 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:51:28 | 只看該作者
Preliminaries,In this chapter, we collect the concepts of fractional calculus related to our work and fixed point theorems used to study the fractional boundary value problems considered in this monograph.
22#
發(fā)表于 2025-3-25 10:04:00 | 只看該作者
23#
發(fā)表于 2025-3-25 14:18:23 | 只看該作者
Existence Results for Coupled Systems of Caputo-Type Sequential Fractional Differential Equations wThis chapter is concerned with the existence and uniqueness of solutions for a coupled system of Caputo-type sequential fractional differential equations equipped with nonlocal integral and Riemann–Stieltjes type boundary conditions.
24#
發(fā)表于 2025-3-25 18:14:46 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:38 | 只看該作者
27#
發(fā)表于 2025-3-26 06:43:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:55:26 | 只看該作者
Coupled Systems of Sequential Caputo and Hadamard Fractional Differential Equations with Coupled SeIn this chapter, we develop the existence criteria for solutions of a coupled system of sequential Caputo and Hadamard fractional differential equations complemented with coupled separated boundary conditions.
29#
發(fā)表于 2025-3-26 13:43:00 | 只看該作者
,A System of Fractional Differential Equations with Erdélyi-Kober Fractional Integral Conditions,In this chapter, we discuss the existence and uniqueness of solutions for a system of fractional differential equations subject to the nonlocal Erdélyi-Kober fractional integral conditions.
30#
發(fā)表于 2025-3-26 20:40:53 | 只看該作者
Positive Solutions for Fractional Differential Systems with Nonlocal Riemann-Liouville Fractional IIn this chapter, we present sufficient conditions for the existence of positive solutions to a nonlocal nonlinear boundary value problem containing Riemann-Liouville fractional derivative and integral operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗平县| 郸城县| 高陵县| 本溪| 澳门| 建宁县| 汉阴县| 班戈县| 察隅县| 大悟县| 灵寿县| 吉木乃县| 浏阳市| 扎兰屯市| 阿尔山市| 贞丰县| 郁南县| 冀州市| 行唐县| 南召县| 青铜峡市| 修水县| 井研县| 浑源县| 丰城市| 简阳市| 安康市| 微博| 凤台县| 孝昌县| 福泉市| 句容市| 义乌市| 信丰县| 华安县| 巢湖市| 博兴县| 东平县| 鹿邑县| 兰溪市| 杭锦旗|