找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear System Identification; From Classical Appro Oliver Nelles Textbook 2020Latest edition The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
查看: 23989|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:35:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear System Identification
副標(biāo)題From Classical Appro
編輯Oliver Nelles
視頻videohttp://file.papertrans.cn/668/667715/667715.mp4
概述Self-contained, no other literature needed.Offers a user-oriented, comprehensive overview of fundamental principles to advanced methods.Provides explanations and terminology from an engineering perspe
圖書封面Titlebook: Nonlinear System Identification; From Classical Appro Oliver Nelles Textbook 2020Latest edition The Editor(s) (if applicable) and The Autho
描述.This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice.?.Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications.?.In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and
出版日期Textbook 2020Latest edition
關(guān)鍵詞Fuzzy and neuro-fuzzy models; Linear optimization; Nonlinear local optimization; Linear and nonlinear d
版次2
doihttps://doi.org/10.1007/978-3-030-47439-3
isbn_softcover978-3-030-47441-6
isbn_ebook978-3-030-47439-3
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Nonlinear System Identification影響因子(影響力)




書目名稱Nonlinear System Identification影響因子(影響力)學(xué)科排名




書目名稱Nonlinear System Identification網(wǎng)絡(luò)公開度




書目名稱Nonlinear System Identification網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear System Identification被引頻次




書目名稱Nonlinear System Identification被引頻次學(xué)科排名




書目名稱Nonlinear System Identification年度引用




書目名稱Nonlinear System Identification年度引用學(xué)科排名




書目名稱Nonlinear System Identification讀者反饋




書目名稱Nonlinear System Identification讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:00:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:50:32 | 只看該作者
Gaussian Process Models (GPMs)y step, starting with just the mean prediction in the noise-free case and adding complexity gradually. The relationship with RBF networks is discussed explicitly. Shedding light on Gaussian processes from various directions, they are hopefully easier to understand than from standard textbooks on this topic.
地板
發(fā)表于 2025-3-22 06:41:36 | 只看該作者
Textbook 2020Latest editiondentification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice.?.Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and
5#
發(fā)表于 2025-3-22 12:47:41 | 只看該作者
6#
發(fā)表于 2025-3-22 14:23:02 | 只看該作者
Nonlinear Global Optimizationvolution strategies, and genetic algorithms. The concept of a tradeoff between exploitation (going for the minimum with high convergence rate) and exploration (discover many regions in the parameter space) is explained and discussed. Also, hybrid approaches, like starting local searches from multiple initial parameters, are considered.
7#
發(fā)表于 2025-3-22 19:53:48 | 只看該作者
8#
發(fā)表于 2025-3-22 23:52:22 | 只看該作者
Fuzzy and Neuro-Fuzzy Modelse Takagi-Sugeno variant already builds bridges to the subsequent chapters on local linear modeling approaches. Different learning schemes for neuro-fuzzy models are discussed, and their principal ideas highlighted. The role of “defuzzification” or normalization in the context of learning and interpretability is discussed in detail.
9#
發(fā)表于 2025-3-23 05:07:55 | 只看該作者
10#
發(fā)表于 2025-3-23 09:36:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深圳市| 和顺县| 德庆县| 甘德县| 铁岭市| 共和县| 河津市| 库伦旗| 东台市| 吉安市| 区。| 花莲县| 松桃| 五常市| 灵川县| 澄江县| 天门市| 琼结县| 涞水县| 彭泽县| 衡阳市| 灌阳县| 罗源县| 精河县| 融水| 奎屯市| 呈贡县| 武安市| 分宜县| 应用必备| 巴彦淖尔市| 双鸭山市| 厦门市| 宜兰市| 康乐县| 梁山县| 滦南县| 兰考县| 额敏县| 同江市| 临泽县|