找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Stochastic Dynamic Engineering Systems; IUTAM Symposium Inns F. Ziegler,G. I. Schu?ller Conference proceedings 1988 Springer-Verl

[復制鏈接]
樓主: MOURN
31#
發(fā)表于 2025-3-26 21:16:47 | 只看該作者
Chaos in Nonlinear Systems Subjected to Small Random Perturbationsministic systems modeled by a one-dimensional mapping are analyzed when the system is perturbed by a multiplicative and an additive noise. Stochastic versions of invariant measure and Lyapunov exponent are calculated and are comparatively discussed with deterministic ones, from the viewpoint of cons
32#
發(fā)表于 2025-3-27 01:13:54 | 只看該作者
Stochastic Stability of Modes at Rest in Coupled Nonlinear Systemse subjected to external random excitation. Sufficient conditions for stability of the rest modes are established and applied to examine the stability of pitching vibration in a nonlinear absorber subjected to a random vertical support excitation.
33#
發(fā)表于 2025-3-27 07:18:14 | 只看該作者
34#
發(fā)表于 2025-3-27 13:30:54 | 只看該作者
Lyapunov Exponents of Nonlinear Stochastic Systemsts. The theory of Lyapunov exponents enables one to talk about stochastic stability, stochastic chaos and stochastic bifurcation of nonlinear stochastic systems in a way that is surprisingly analogous to the deterministic one.
35#
發(fā)表于 2025-3-27 15:50:43 | 只看該作者
36#
發(fā)表于 2025-3-27 20:18:53 | 只看該作者
37#
發(fā)表于 2025-3-28 00:37:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:22:48 | 只看該作者
39#
發(fā)表于 2025-3-28 08:48:25 | 只看該作者
40#
發(fā)表于 2025-3-28 10:41:29 | 只看該作者
Stability of Linear Differential Systems with Parametric ExcitationThe aim of this paper is to summarize both theoritical and numerical results concerning the dependence of the Lyapunov exponent of the solution of the solution of a linear equation, in terms of some parameters describing the law of the parametric excitation.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台南县| 揭阳市| 洛阳市| 松原市| 兰溪市| 芒康县| 临邑县| 五常市| 苏尼特左旗| 辰溪县| 库伦旗| 吕梁市| 札达县| 当阳市| 东港市| 隆子县| 屏南县| 军事| 汝州市| 大城县| 广南县| 通河县| 衡阳县| 道真| 潞西市| 黄浦区| 裕民县| 东至县| 永善县| 通化市| 金川县| 柳林县| 阳新县| 高陵县| 承德县| 宜城市| 龙陵县| 咸阳市| 鲁甸县| 翁牛特旗| 玉龙|