找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Singular Perturbation Phenomena; Theory and Applicati K. W. Chang,F. A. Howes Book 1984 Springer Science+Business Media New York

[復制鏈接]
樓主: 迅速
11#
發(fā)表于 2025-3-23 11:52:55 | 只看該作者
12#
發(fā)表于 2025-3-23 15:25:52 | 只看該作者
Semilinear Singular Perturbation Problems,ural questions to ask regarding this problem are: Does the problem have a solution for all small values of ε? Once the existence of a solution has been established, how does the solution behave as ε + 0.?
13#
發(fā)表于 2025-3-23 18:50:20 | 只看該作者
Examples and Applications,ounded second derivative, then by Theorem 3.1, for sufficiently small .,the Dirichlet problem has a solution .which satisfies . where . Moreover, the behavior of the solution . in the boundary layers at t = -1 and/or t = 1 (if u(-1)≠A and/or u(1) ≠ B) can be described by means of the layer functions given in the conclusion of Theorem 3.1.
14#
發(fā)表于 2025-3-24 00:54:35 | 只看該作者
Introduction,We are mainly interested in quasilinear and nonlinear boundary value problems, to which some well-known methods, such as the methods of matched asymptotic expansions and two-variable expansions are not immediately applicable. For example, let us consider the following boundary value problem(cf. O’Malley [75], Chapter 5)
15#
發(fā)表于 2025-3-24 03:55:03 | 只看該作者
Quasilinear Singular Perturbation Problems,We consider now the singularly perturbed quasilinear Dirichlet problem
16#
發(fā)表于 2025-3-24 08:12:29 | 只看該作者
17#
發(fā)表于 2025-3-24 12:30:00 | 只看該作者
978-0-387-96066-1Springer Science+Business Media New York 1984
18#
發(fā)表于 2025-3-24 18:26:04 | 只看該作者
Nonlinear Singular Perturbation Phenomena978-1-4612-1114-3Series ISSN 0066-5452 Series E-ISSN 2196-968X
19#
發(fā)表于 2025-3-24 20:02:47 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/n/image/667683.jpg
20#
發(fā)表于 2025-3-25 02:45:30 | 只看該作者
https://doi.org/10.1007/978-1-4612-1114-3Area; Boundary value problem; DEX; Invariant; behavior; boundary element method; eXist; equation; form; maxim
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳曲县| 临江市| 旌德县| 辉县市| 类乌齐县| 黄浦区| 通化县| 鱼台县| 台南县| 来安县| 镇坪县| 嘉鱼县| 休宁县| 屏边| 大姚县| 甘泉县| 遵义市| 南阳市| 长海县| 年辖:市辖区| 西吉县| 峡江县| 五原县| 珠海市| 法库县| 江门市| 云南省| 平原县| 阆中市| 长白| 宝丰县| 汶川县| 亚东县| 利辛县| 重庆市| 信阳市| 镇远县| 正安县| 当阳市| 泗水县| 凌源市|