找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Reaction-Diffusion Systems; Conditional Symmetry Roman Cherniha,Vasyl‘ Davydovych Book 2017 Springer International Publishing AG

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 11:10:42 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
https://doi.org/10.1007/978-3-319-65467-6Nonlinear reaction-diffusion system; Lie and conditional symmetry; Lotka-Volterra system; Steady-state
13#
發(fā)表于 2025-3-23 19:49:31 | 只看該作者
Roman Cherniha,Vasyl‘ DavydovychPresents important results in solving nonlinear reaction-diffusion equations.Chapters contain ideas for further theoretical generalizations and examples for real world applications.Includes applicatio
14#
發(fā)表于 2025-3-23 23:35:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:08:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:54 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:53 | 只看該作者
,Conditional Symmetries and Exact Solutions of Diffusive Lotka–Volterra Systems,cted for the two-component diffusive Lotka–Volterra system and some examples are presented for the three-component diffusive Lotka–Volterra system. Moreover, a realistic interpretation for two and three competing species is provided for some exact solutions.
18#
發(fā)表于 2025-3-24 16:41:40 | 只看該作者
0075-8434 and examples for real world applications.Includes applicatio.This book presents several fundamental results in?solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications
19#
發(fā)表于 2025-3-24 21:35:47 | 只看該作者
Book 2017iffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which?are relevant for biologic
20#
發(fā)表于 2025-3-25 00:43:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文登市| 恩施市| 容城县| 武胜县| 固原市| 仪陇县| 镇赉县| 香格里拉县| 玉溪市| 万宁市| 金湖县| 麻栗坡县| 夏津县| 张北县| 启东市| 游戏| 论坛| 乌鲁木齐县| 淅川县| 汝南县| 浪卡子县| 乾安县| 积石山| 黄石市| 绥宁县| 麻栗坡县| 梓潼县| 白山市| 奉新县| 枞阳县| 滨海县| 白银市| 兴和县| 宁强县| 阳朔县| 始兴县| 京山县| 德保县| 阿荣旗| 叙永县| 商南县|