找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Reaction-Diffusion Systems; Conditional Symmetry Roman Cherniha,Vasyl‘ Davydovych Book 2017 Springer International Publishing AG

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 11:10:42 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
https://doi.org/10.1007/978-3-319-65467-6Nonlinear reaction-diffusion system; Lie and conditional symmetry; Lotka-Volterra system; Steady-state
13#
發(fā)表于 2025-3-23 19:49:31 | 只看該作者
Roman Cherniha,Vasyl‘ DavydovychPresents important results in solving nonlinear reaction-diffusion equations.Chapters contain ideas for further theoretical generalizations and examples for real world applications.Includes applicatio
14#
發(fā)表于 2025-3-23 23:35:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:08:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:54 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:53 | 只看該作者
,Conditional Symmetries and Exact Solutions of Diffusive Lotka–Volterra Systems,cted for the two-component diffusive Lotka–Volterra system and some examples are presented for the three-component diffusive Lotka–Volterra system. Moreover, a realistic interpretation for two and three competing species is provided for some exact solutions.
18#
發(fā)表于 2025-3-24 16:41:40 | 只看該作者
0075-8434 and examples for real world applications.Includes applicatio.This book presents several fundamental results in?solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications
19#
發(fā)表于 2025-3-24 21:35:47 | 只看該作者
Book 2017iffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which?are relevant for biologic
20#
發(fā)表于 2025-3-25 00:43:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪| 韶山市| 琼结县| 武山县| 西和县| 原阳县| 洪泽县| 揭西县| 临江市| 寿阳县| 兴城市| 睢宁县| 确山县| 金昌市| 克拉玛依市| 吴忠市| 瓮安县| 万源市| 峨山| 独山县| 武夷山市| 嘉善县| 原平市| 康乐县| 丰台区| 贵港市| 江城| 扎兰屯市| 越西县| 龙游县| 张掖市| 双江| 赤壁市| 延安市| 肇庆市| 工布江达县| 利津县| 东乡| 颍上县| 息烽县| 依安县|