找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Reaction-Diffusion Systems; Conditional Symmetry Roman Cherniha,Vasyl‘ Davydovych Book 2017 Springer International Publishing AG

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 11:10:42 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
https://doi.org/10.1007/978-3-319-65467-6Nonlinear reaction-diffusion system; Lie and conditional symmetry; Lotka-Volterra system; Steady-state
13#
發(fā)表于 2025-3-23 19:49:31 | 只看該作者
Roman Cherniha,Vasyl‘ DavydovychPresents important results in solving nonlinear reaction-diffusion equations.Chapters contain ideas for further theoretical generalizations and examples for real world applications.Includes applicatio
14#
發(fā)表于 2025-3-23 23:35:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:08:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:54 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:53 | 只看該作者
,Conditional Symmetries and Exact Solutions of Diffusive Lotka–Volterra Systems,cted for the two-component diffusive Lotka–Volterra system and some examples are presented for the three-component diffusive Lotka–Volterra system. Moreover, a realistic interpretation for two and three competing species is provided for some exact solutions.
18#
發(fā)表于 2025-3-24 16:41:40 | 只看該作者
0075-8434 and examples for real world applications.Includes applicatio.This book presents several fundamental results in?solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications
19#
發(fā)表于 2025-3-24 21:35:47 | 只看該作者
Book 2017iffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which?are relevant for biologic
20#
發(fā)表于 2025-3-25 00:43:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彩票| 运城市| 利津县| 嘉定区| 武穴市| 武威市| 桃园市| 和硕县| 工布江达县| 龙井市| 甘谷县| 九台市| 曲水县| 呼玛县| 通辽市| 凤山县| 当涂县| 绥德县| 鹤壁市| 连南| 昂仁县| 赣州市| 浪卡子县| 江达县| 龙川县| 靖边县| 西宁市| 惠东县| 威信县| 新绛县| 阿鲁科尔沁旗| 鄢陵县| 开江县| 托克逊县| 阿巴嘎旗| 高邑县| 伊春市| 武汉市| 攀枝花市| 台北县| 富裕县|