找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Nonlinear Principal Component Analysis and Its Applications; Yuichi Mori,Masahiro Kuroda,Naomichi Makino Book 2016 The Author(s) 2016 Alte

[復(fù)制鏈接]
樓主: 指責(zé)
41#
發(fā)表于 2025-3-28 17:49:43 | 只看該作者
42#
發(fā)表于 2025-3-28 21:26:30 | 只看該作者
2191-544X des an acceleration algorithm that speeds up the convergent This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data.?.In the part dealing with the principle, after a brief introduction
43#
發(fā)表于 2025-3-29 02:38:20 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:25 | 只看該作者
Joint Dimension Reduction and Clusterings problem, several methods have been proposed that jointly perform clustering of objects and dimension reduction of the variables. In this chapter, we review the technique whereby multiple correspondence analysis and k-means clustering are combined in order to investigate the relationships between qualitative variables.
45#
發(fā)表于 2025-3-29 09:05:02 | 只看該作者
Multiple Correspondence Analysisformulate an MCA. We introduce a formulation in which the quantified data matrix is approximated by a lower-rank matrix using the quantification technique proposed by Murakami et al. (Non-metric principal component analysis for categorical variables with multiple quantifications, .).
46#
發(fā)表于 2025-3-29 12:21:21 | 只看該作者
Variable Selection in Nonlinear Principal Component Analysis for numerical variables. In this chapter, we discuss variable selection in nonlinear PCA. We select a subset of variables that represents all variables as far as possible from mixed measurement level data using criteria in the modified PCA, which naturally includes a variable selection procedure.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳东县| 宜宾县| 亚东县| 杨浦区| 海丰县| 武城县| 临西县| 贵溪市| 大同县| 健康| 徐州市| 曲阳县| 庆阳市| 区。| 凤翔县| 根河市| 龙游县| 通山县| 河西区| 达拉特旗| 武宁县| 大方县| 固始县| 嘉荫县| 承德市| 获嘉县| 岳普湖县| 云梦县| 德钦县| 金门县| 台山市| 大理市| 香河县| 武义县| 新巴尔虎右旗| 灌阳县| 北京市| 任丘市| 望都县| 乌海市| 洪泽县|