找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Phenomena; Proceedings of the C K. B. Wolf Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Hamiltonian.differe

[復(fù)制鏈接]
樓主: miserly
41#
發(fā)表于 2025-3-28 14:37:54 | 只看該作者
42#
發(fā)表于 2025-3-28 22:42:38 | 只看該作者
43#
發(fā)表于 2025-3-29 01:17:13 | 只看該作者
Energy transport in an inhomogeneous Heisenberg ferromagnetic chain,ed nonlinear Schr?dinger equation with .-dependent coefficients is proved. An extension of the AKNS-ZS formalism is given which enables us to solve the latter equation exactly for certain specific inhomogeneities. Energy-momentum transport along the chain is related to the solution of this equation.
44#
發(fā)表于 2025-3-29 03:43:11 | 只看該作者
Atomic nuclei as solitons, in which the .-empirical bound state energies are associated with the solutions, and formulate generally the problem of nuclear structure, reactions, and two-nucleon interactions from an inverse scattreing theory approach.
45#
發(fā)表于 2025-3-29 08:40:25 | 只看該作者
46#
發(fā)表于 2025-3-29 14:06:26 | 只看該作者
Nonlinear Phenomena978-3-540-38721-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
47#
發(fā)表于 2025-3-29 15:42:47 | 只看該作者
0075-8450 Overview: 978-3-540-12730-7978-3-540-38721-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
48#
發(fā)表于 2025-3-29 19:57:36 | 只看該作者
,Integrability in dynamical systems and the Painlevé property,The analytic structure of the solution of an ordinary differential equation is intimately related to its integrability. The Painlevé property, ., pure poles being the only movable singularities, allows the identification of new integrable dynamical systems. In this paper, we recall briefly the Ablowita-Ramani-Segur (ARS) algorithm
49#
發(fā)表于 2025-3-30 03:50:41 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/n/image/667636.jpg
50#
發(fā)表于 2025-3-30 05:57:46 | 只看該作者
https://doi.org/10.1007/3-540-12730-5Hamiltonian; differential equation; dynamical system; dynamical systems; general relativity; geometry; inv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥城市| 翁牛特旗| 霍山县| 南澳县| 泗洪县| 喀什市| 临夏县| 龙里县| 桐城市| 蒙山县| 手游| 南平市| 乌兰察布市| 盱眙县| 溆浦县| 广河县| 凤城市| 霍山县| 泰顺县| 冕宁县| 景洪市| 游戏| 巴林右旗| 遂昌县| 巨野县| 九台市| 永新县| 无棣县| 宁海县| 醴陵市| 黔江区| 县级市| 施秉县| 青海省| 天气| 永靖县| 韶山市| 扎鲁特旗| 滨海县| 内丘县| 略阳县|