找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Nonlinear Partial Differential Equations for Future Applications; Sendai, Japan, July Shigeaki Koike,Hideo Kozono,Shigeru Sakaguchi Confer

[復(fù)制鏈接]
樓主: centipede
31#
發(fā)表于 2025-3-26 21:04:34 | 只看該作者
On Stability and Bifurcation in Parallel Flows of Compressible Navier-Stokes Equations,onsidered for small Reynolds and Mach numbers. An instability result of the plane Poiseuille flow is then given for a certain range of Reynolds and Mach numbers, together with a result of the bifurcation of wave trains from the plane Poiseuille flow.
32#
發(fā)表于 2025-3-27 03:36:59 | 只看該作者
High-Energy Eigenfunctions of the Laplacian on the Torus and the Sphere with Nodal Sets of Complicaned in a contractible subset of .. We show that for any sufficiently large enough odd integer . there exists an eigenfunctions . of the Laplacian on . or . satisfying . (with . or . on . or ., respectively), and with a connected component of the nodal set of . given by?., up?to an ambient diffeomorphism.
33#
發(fā)表于 2025-3-27 06:50:23 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:50 | 只看該作者
35#
發(fā)表于 2025-3-27 14:06:19 | 只看該作者
HJB Equation, Dynamic Programming Principle, and Stochastic Optimal Control,l control problems. The manuscript discusses, among other things, the classical necessary and sufficient conditions for optimality, properties of the value function, and it contains a proof of the dynamic programming principle, and a proof that the value function is a unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation.
36#
發(fā)表于 2025-3-27 18:20:18 | 只看該作者
Conference proceedings 2021 Future Applications that were held in 2017 at Tohoku University in Japan.?.?.The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation? for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaev
37#
發(fā)表于 2025-3-27 23:46:39 | 只看該作者
38#
發(fā)表于 2025-3-28 02:10:27 | 只看該作者
2194-1009 metric analysis by internationally respected experts.CombineThis volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan.?.?.The contribu
39#
發(fā)表于 2025-3-28 06:36:20 | 只看該作者
10樓
40#
發(fā)表于 2025-3-28 13:40:52 | 只看該作者
10樓
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金山区| 荃湾区| 泰宁县| 濮阳市| 万宁市| 霍邱县| 宜良县| 随州市| 边坝县| 乌鲁木齐市| 泰和县| 通化市| 扶绥县| 奎屯市| 宝清县| 新沂市| 徐州市| 沙湾县| 赤水市| 安仁县| 全州县| 佛山市| 永修县| 额济纳旗| 维西| 隆子县| 安阳县| 兴和县| 恭城| 保亭| 岳阳市| 扎兰屯市| 马公市| 翁源县| 广河县| 铜陵市| 旺苍县| 康乐县| 积石山| 五家渠市| 积石山|