找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Parabolic and Elliptic Equations; C. V. Pao Book 1992 Springer Science+Business Media New York 1992 DEX.Fusion.behavior.calculus

[復(fù)制鏈接]
查看: 44861|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:17:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Parabolic and Elliptic Equations
編輯C. V. Pao
視頻videohttp://file.papertrans.cn/668/667623/667623.mp4
圖書封面Titlebook: Nonlinear Parabolic and Elliptic Equations;  C. V. Pao Book 1992 Springer Science+Business Media New York 1992 DEX.Fusion.behavior.calculus
描述In response to the growing use of reaction diffusion problemsin many fields, this monograph gives a systematic treatment of a classofnonlinear parabolic and elliptic differential equations and theirapplications these problems. It is an important reference formathematicians and engineers, as well as a practical text forgraduate students.
出版日期Book 1992
關(guān)鍵詞DEX; Fusion; behavior; calculus; class; differential equation; equation; model; online; stability
版次1
doihttps://doi.org/10.1007/978-1-4615-3034-3
isbn_softcover978-1-4613-6323-1
isbn_ebook978-1-4615-3034-3
copyrightSpringer Science+Business Media New York 1992
The information of publication is updating

書目名稱Nonlinear Parabolic and Elliptic Equations影響因子(影響力)




書目名稱Nonlinear Parabolic and Elliptic Equations影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Parabolic and Elliptic Equations網(wǎng)絡(luò)公開(kāi)度




書目名稱Nonlinear Parabolic and Elliptic Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Nonlinear Parabolic and Elliptic Equations被引頻次




書目名稱Nonlinear Parabolic and Elliptic Equations被引頻次學(xué)科排名




書目名稱Nonlinear Parabolic and Elliptic Equations年度引用




書目名稱Nonlinear Parabolic and Elliptic Equations年度引用學(xué)科排名




書目名稱Nonlinear Parabolic and Elliptic Equations讀者反饋




書目名稱Nonlinear Parabolic and Elliptic Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:58:44 | 只看該作者
Elliptic Boundary-Value Problems,tegroelliptic boundary-value problems is included in the discussion. The results for elliptic boundary-value problems are applied to a number of specific models as applications of the theory, including a discussion of the existence of multiple positive solutions.
板凳
發(fā)表于 2025-3-22 02:16:55 | 只看該作者
Equations with Nonlinear Boundary Conditions,on for elliptic boundary-value problems there is an analogous discussion on the spectrum problem where the parameter . appears in both the internal and the boundary functions. Results are applied to three specific models in heat-conduction, biochemical reaction, and gas-liquid interaction problems.
地板
發(fā)表于 2025-3-22 06:51:11 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:15 | 只看該作者
6#
發(fā)表于 2025-3-22 16:52:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:20 | 只看該作者
9#
發(fā)表于 2025-3-23 04:45:45 | 只看該作者
Parabolic Boundary-Value Problems, to a unique solution of an integral equation. This chapter shows that the limit of the monotone sequence is indeed the solution of the parabolic problem for each of the three basic boundary conditions. This regularity result is given in the framework of a more general parabolic boundary-value probl
10#
發(fā)表于 2025-3-23 05:48:12 | 只看該作者
Elliptic Boundary-Value Problems,ication that the limits of the monotone sequences are classical solutions. Various sufficient conditions are given in later sections to ensure the uniqueness and the multiplicity of positive solutions. When the reaction function involves a parameter the spectrum of positive solutions and the depende
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社旗县| 甘谷县| 湘潭市| 枣阳市| 武冈市| 大化| 年辖:市辖区| 镇平县| 邹城市| 保康县| 启东市| 莱芜市| 韶关市| 红河县| 威宁| 凉山| 阿拉尔市| 农安县| 漳州市| 乐至县| 华容县| 绥宁县| 文化| 略阳县| 南靖县| 星座| 台江县| 白山市| 工布江达县| 深圳市| 舟山市| 博乐市| 固始县| 毕节市| 齐河县| 神木县| 栾城县| 农安县| 江阴市| 龙口市| 沾化县|