找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Optimization and Applications; G. Pillo,F. Giannessi Book 1996 Springer Science+Business Media New York 1996 Interpolation.algor

[復(fù)制鏈接]
樓主: PLY
31#
發(fā)表于 2025-3-26 23:40:53 | 只看該作者
An Algorithm using Quadratic Interpolation for Unconstrained Derivative Free Optimization,vative of the objective function. A new algorithm is proposed that uses quadratic models in a trust region framework. The algorithm is constructed to require few evaluations of the objective function and is designed to be relatively insensitive to noise in the objective function values. Its performa
32#
發(fā)表于 2025-3-27 04:31:51 | 只看該作者
33#
發(fā)表于 2025-3-27 08:44:55 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:50 | 只看該作者
Successive Projection Methods for the Solution of Overdetermined Nonlinear Systems,sible region is, in general, empty. We prove a local convergence theorem to fixed points of the algorithmic mapping. We defined a stopping rule for ill-conditioned problems, based on the behavior of the increment norm ∥.. ? ..∥. We show numerical experiments.
35#
發(fā)表于 2025-3-27 14:05:59 | 只看該作者
Space-Transformation Technique: The State of the Art,is used to reduce the original problem with equality and inequality constraints to a problem involving only equality constraints. Continuous and discrete versions of the stable gradient projection method and the Newton method are used for treating the reduced problem. Upon the inverse transformation
36#
發(fā)表于 2025-3-27 21:43:16 | 只看該作者
Inexact Newton Methods for Semismooth Equations with Applications to Variational Inequality Problemacterization of the Q-superlinear and Q-quadratic convergence of inexact Newton methods. We then apply these results to a particular semismooth system of equations arising from variational inequality problems, and present a globally and locally fast convergent algorithm for its solution.
37#
發(fā)表于 2025-3-28 00:06:20 | 只看該作者
38#
發(fā)表于 2025-3-28 04:09:30 | 只看該作者
39#
發(fā)表于 2025-3-28 08:28:01 | 只看該作者
40#
發(fā)表于 2025-3-28 10:49:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福泉市| 寻甸| 贵港市| 伊宁市| 吴桥县| 冕宁县| 青川县| 邵武市| 福泉市| 柘荣县| 厦门市| 甘肃省| 鸡西市| 且末县| 抚远县| 福泉市| 格尔木市| 兴宁市| 若羌县| 阿巴嘎旗| 灯塔市| 玉林市| 赞皇县| 龙岩市| 河源市| 祁阳县| 什邡市| 达孜县| 新闻| 留坝县| 翁牛特旗| 来安县| 金乡县| 宜宾市| 兴义市| 兰州市| 岳阳县| 德州市| 定远县| 景谷| 天峻县|