找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Numerical Methods and Rational Approximation II; Annie Cuyt Book 1994 Springer Science+Business Media Dordrecht 1994 Meromorphic

[復(fù)制鏈接]
樓主: retort
11#
發(fā)表于 2025-3-23 13:05:36 | 只看該作者
Orthogonality and Boundary Interpolation quasi-definite linear functional on., and define the inner product., where .. (In particular . may be a positive definite functional given by.,where μ is a measure such that all functions in . are μ-integrable).Let .be an orthogonal system obtained from the basis . by the Gram-Sdunidt method and de
12#
發(fā)表于 2025-3-23 16:22:53 | 只看該作者
13#
發(fā)表于 2025-3-23 20:50:13 | 只看該作者
Gegenbauer-Sobolev Orthogonal Polynomialsmials algebraic and differential properties are obtained, as well as the relation with the classical Gegenbauer polynomials Finally, some properties concerning the localization and separation of the zeros of these polynomials are deduced.
14#
發(fā)表于 2025-3-24 01:25:20 | 只看該作者
Inverse Problems: Rational Modificationsequation . for α ∈ – {0} If we fix a solution . we obtain the corresponding sequence of moments, characterize the regularity and we determine the expression for the sequence of monic orthogonal polynomials related to .. Finally we study the positive definite case, we obtain the relation between the
15#
發(fā)表于 2025-3-24 02:53:46 | 只看該作者
Normality and Error Formulae for Simultaneous Rational Approximants to Nikishin Systems and continued fractions in a very natural way. As in the case of Padé approximants so also here Markov functions are especially interesting and important. The common denominator of the simultaneous approximants satisfies a multiple orthogonality relation, which in the case of Markov functions is de
16#
發(fā)表于 2025-3-24 08:19:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:13:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:41 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:49:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥乡县| 闽清县| 绍兴市| 峨边| 民勤县| 丘北县| 新源县| 肇州县| 蒲城县| 博乐市| 潼关县| 固镇县| 神池县| 沙雅县| 平原县| 兴国县| 隆子县| 万年县| 昆山市| 雅江县| 五原县| 从化市| 定兴县| 钟祥市| 武威市| 昭觉县| 翼城县| 江阴市| 启东市| 卢湾区| 太原市| 翼城县| 万宁市| 云南省| 贡嘎县| 泾阳县| 岐山县| 泸定县| 正镶白旗| 吴忠市| 波密县|