找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Multiobjective Optimization; A Generalized Homoto Claus Hillermeier Book 2001 Birkh?user Basel 2001 Vector optimization.geometry.

[復(fù)制鏈接]
查看: 42470|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:12:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Nonlinear Multiobjective Optimization
副標(biāo)題A Generalized Homoto
編輯Claus Hillermeier
視頻videohttp://file.papertrans.cn/668/667570/667570.mp4
叢書(shū)名稱International Series of Numerical Mathematics
圖書(shū)封面Titlebook: Nonlinear Multiobjective Optimization; A Generalized Homoto Claus Hillermeier Book 2001 Birkh?user Basel 2001 Vector optimization.geometry.
描述.Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization..The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods..
出版日期Book 2001
關(guān)鍵詞Vector optimization; geometry; homotopy theory; multi-objective optimization; numerical analysis; optimiz
版次1
doihttps://doi.org/10.1007/978-3-0348-8280-4
isbn_softcover978-3-0348-9501-9
isbn_ebook978-3-0348-8280-4Series ISSN 0373-3149 Series E-ISSN 2296-6072
issn_series 0373-3149
copyrightBirkh?user Basel 2001
The information of publication is updating

書(shū)目名稱Nonlinear Multiobjective Optimization影響因子(影響力)




書(shū)目名稱Nonlinear Multiobjective Optimization影響因子(影響力)學(xué)科排名




書(shū)目名稱Nonlinear Multiobjective Optimization網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Nonlinear Multiobjective Optimization網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Nonlinear Multiobjective Optimization被引頻次




書(shū)目名稱Nonlinear Multiobjective Optimization被引頻次學(xué)科排名




書(shū)目名稱Nonlinear Multiobjective Optimization年度引用




書(shū)目名稱Nonlinear Multiobjective Optimization年度引用學(xué)科排名




書(shū)目名稱Nonlinear Multiobjective Optimization讀者反饋




書(shū)目名稱Nonlinear Multiobjective Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:02:20 | 只看該作者
地板
發(fā)表于 2025-3-22 07:53:12 | 只看該作者
5#
發(fā)表于 2025-3-22 08:50:03 | 只看該作者
6#
發(fā)表于 2025-3-22 15:57:53 | 只看該作者
Book 2001eoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization..The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods..
7#
發(fā)表于 2025-3-22 20:30:29 | 只看該作者
Book 2001 multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is th
8#
發(fā)表于 2025-3-23 00:26:37 | 只看該作者
The Manifold of Stationary Points,ion can therefore be interpreted as a zero manifold in an extended variable space, the product space formed by the actual variables ., the Lagrange multipliers λ and the weight vectors α. On certain conditions this zero manifold is a (.? 1)-dimensional differentiable manifold.
9#
發(fā)表于 2025-3-23 02:00:48 | 只看該作者
0373-3149 ial optimization..The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods..978-3-0348-9501-9978-3-0348-8280-4Series ISSN 0373-3149 Series E-ISSN 2296-6072
10#
發(fā)表于 2025-3-23 07:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉新县| 永川市| 时尚| 栖霞市| 靖江市| 东乡| 姚安县| 扎鲁特旗| 紫金县| 台北县| 上虞市| 腾冲县| 武城县| 罗甸县| 高台县| 敖汉旗| 卫辉市| 株洲县| 关岭| 朝阳区| 五大连池市| 石棉县| 富民县| 客服| 霍城县| 江川县| 定日县| 饶河县| 辉南县| 靖安县| 肇州县| 太原市| 土默特右旗| 北京市| 仁怀市| 义马市| 徐闻县| 平邑县| 嘉禾县| 克什克腾旗| 黎平县|