找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Model Predictive Control; Theory and Algorithm Lars Grüne,Jürgen Pannek Book 2017Latest edition Springer International Publishing

[復(fù)制鏈接]
樓主: 不友善
31#
發(fā)表于 2025-3-27 00:02:22 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:14 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:32:20 | 只看該作者
Economic NMPC,mance of economic MPC. In this chapter, we will rigorously establish stability as well as averaged and non-averaged performance estimates for strictly dissipative economic MPC problems, both with and without terminal conditions.
35#
發(fā)表于 2025-3-27 15:24:36 | 只看該作者
Numerical Discretization,ep size control algorithms. Furthermore,we explain how these methods can be integrated into NMPC algorithms, investigate how the numerical errors affect the stability of the NMPC controller derived from the numerical model and show which kind of robustness is needed in order to ensure a practical kind of stability.
36#
發(fā)表于 2025-3-27 18:40:54 | 只看該作者
Book 2017Latest edition NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse opt
37#
發(fā)表于 2025-3-27 21:55:19 | 只看該作者
38#
發(fā)表于 2025-3-28 02:49:24 | 只看該作者
Stability and Suboptimality Using Stabilizing Terminal Conditions,city” of the finite time optimal value functions is proved and used in order to apply the relaxed dynamic programming framework introduced in the previous chapter. Using this framework, stability, suboptimality (i.e., estimates about the infinite horizon performance of the NMPC closed-loop system), and inverse optimality results are proved.
39#
發(fā)表于 2025-3-28 07:29:05 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
勐海县| 兴海县| 东海县| 蚌埠市| 龙胜| 象州县| 双鸭山市| 固原市| 新安县| 娄底市| 嘉禾县| 伽师县| 香河县| 海伦市| 河曲县| 洪洞县| 高碑店市| 海兴县| 扎囊县| 黄平县| 天全县| 广德县| 通河县| 育儿| 峨眉山市| 淮南市| 花垣县| 乌兰县| 保靖县| 察雅县| 闽清县| 凤山县| 佛坪县| 冀州市| 九台市| 兴仁县| 腾冲县| 汉沽区| 铁岭市| 石渠县| 崇州市|