找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Model Predictive Control; Theory and Algorithm Lars Grüne,Jürgen Pannek Book 2017Latest edition Springer International Publishing

[復(fù)制鏈接]
樓主: 不友善
31#
發(fā)表于 2025-3-27 00:02:22 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:14 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:32:20 | 只看該作者
Economic NMPC,mance of economic MPC. In this chapter, we will rigorously establish stability as well as averaged and non-averaged performance estimates for strictly dissipative economic MPC problems, both with and without terminal conditions.
35#
發(fā)表于 2025-3-27 15:24:36 | 只看該作者
Numerical Discretization,ep size control algorithms. Furthermore,we explain how these methods can be integrated into NMPC algorithms, investigate how the numerical errors affect the stability of the NMPC controller derived from the numerical model and show which kind of robustness is needed in order to ensure a practical kind of stability.
36#
發(fā)表于 2025-3-27 18:40:54 | 只看該作者
Book 2017Latest edition NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse opt
37#
發(fā)表于 2025-3-27 21:55:19 | 只看該作者
38#
發(fā)表于 2025-3-28 02:49:24 | 只看該作者
Stability and Suboptimality Using Stabilizing Terminal Conditions,city” of the finite time optimal value functions is proved and used in order to apply the relaxed dynamic programming framework introduced in the previous chapter. Using this framework, stability, suboptimality (i.e., estimates about the infinite horizon performance of the NMPC closed-loop system), and inverse optimality results are proved.
39#
發(fā)表于 2025-3-28 07:29:05 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通州区| 延安市| 钟山县| 鄂伦春自治旗| 施甸县| 海阳市| 三都| 大方县| 云南省| 江津市| 延津县| 深水埗区| 庆安县| 扬中市| 喜德县| 白玉县| 灌云县| 内江市| 北票市| 咸阳市| 汉源县| 石首市| 佛学| 富裕县| 化州市| 屏东县| 永德县| 进贤县| 延寿县| 涟源市| 玉屏| 阿巴嘎旗| 紫金县| 南陵县| 古浪县| 平阴县| 江城| 饶阳县| 根河市| 古田县| 北票市|