找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Methods in Riemannian and K?hlerian Geometry; Delivered at the Ger Jürgen Jost Book 1991Latest edition Springer Basel AG 1991 cur

[復(fù)制鏈接]
查看: 21995|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:01:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry
副標(biāo)題Delivered at the Ger
編輯Jürgen Jost
視頻videohttp://file.papertrans.cn/668/667556/667556.mp4
圖書封面Titlebook: Nonlinear Methods in Riemannian and K?hlerian Geometry; Delivered at the Ger Jürgen Jost Book 1991Latest edition Springer Basel AG 1991 cur
描述In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent r?le in geometry. Let us Iist some of the most important ones: - harmonic maps between Riemannian and K?hlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on K?hler manifolds - Yang-Mills equations in vector bundles over m
出版日期Book 1991Latest edition
關(guān)鍵詞curvature; differential geometry; manifold; Minimal surface
版次2
doihttps://doi.org/10.1007/978-3-0348-7706-0
isbn_softcover978-3-0348-7708-4
isbn_ebook978-3-0348-7706-0
copyrightSpringer Basel AG 1991
The information of publication is updating

書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry影響因子(影響力)




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry網(wǎng)絡(luò)公開度




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry被引頻次




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry被引頻次學(xué)科排名




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry年度引用




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry年度引用學(xué)科排名




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry讀者反饋




書目名稱Nonlinear Methods in Riemannian and K?hlerian Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:52 | 只看該作者
Geometric Preliminaries,In this chapter, we assemble some basic material concerning connections on Riemannian, complex, and K?hler manifolds, and derive the nonlinear partial differential equations dealt with in this book, namely the harmonic map and Yang-Mills equations.
板凳
發(fā)表于 2025-3-22 03:49:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:28:21 | 只看該作者
5#
發(fā)表于 2025-3-22 09:17:14 | 只看該作者
Geometric applications of harmonic maps,In this section, we shall use our Bochner type formula (3.2.10),.for a harmonic .: . → . in order to derive some elementary results about the topology of nonpositively curved Riemannian manifolds. These results are well-known, and the present section therefore is included only for reasons of exposition.
6#
發(fā)表于 2025-3-22 15:05:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:15:20 | 只看該作者
8#
發(fā)表于 2025-3-22 22:19:42 | 只看該作者
9#
發(fā)表于 2025-3-23 05:07:05 | 只看該作者
ntly, nonlinear PDE played a more and more pro~inent r?le in geometry. Let us Iist some of the most important ones: - harmonic maps between Riemannian and K?hlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on K?hler manifolds - Yang-Mills equations in vector bundles over m978-3-0348-7708-4978-3-0348-7706-0
10#
發(fā)表于 2025-3-23 08:00:34 | 只看該作者
esearchers, travelers, military commanders, etc. who had relation to the Black Sea..It includes a multi-century chronology of the events that became the outstanding milestones in the history of development of the Black Sea – Azov Sea region. ?.978-3-662-51840-3978-3-642-55227-4Series ISSN 2626-1383 Series E-ISSN 2626-1405
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 阿拉尔市| 海淀区| 修水县| 兖州市| 准格尔旗| 河西区| 汉中市| 苍梧县| 建平县| 拉孜县| 巴彦淖尔市| 湄潭县| 丹阳市| 黎川县| 田林县| 雷山县| 营口市| 海安县| 商河县| 璧山县| 米脂县| 富川| 山东| 黄大仙区| 巨鹿县| 丰城市| 长沙市| 津市市| 新密市| 霍山县| 星子县| 祁东县| 瑞金市| 永定县| 金华市| 孝感市| 团风县| 沽源县| 玉龙| 澎湖县|