找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Mathematics for Uncertainty and its Applications; Shoumei Li,Xia Wang,Li Guan Conference proceedings 2011 Springer Berlin Heidel

[復制鏈接]
樓主: Gram114
31#
發(fā)表于 2025-3-27 00:24:22 | 只看該作者
Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity,uity. Our results are natural extensions of the classical Kolmogorov’s strong law of large numbers to the case where probability measures become to imprecise. Finally, an important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.
32#
發(fā)表于 2025-3-27 01:20:06 | 只看該作者
On Spaces of Bochner and Pettis Integrable Functions and Their Set-Valued Counterparts, setting and the canonical Banach spaces of bounded maps between Banach spaces that they generate. The main tool that we use to relate the Banach space-valued case to the set-valued case, is the R?dstr?m embedding theorem.
33#
發(fā)表于 2025-3-27 06:31:22 | 只看該作者
Upper Derivatives of Set Functions Represented as the Choquet Indefinite Integral, derivative of . at a measurable set . with respect to a measure . is, under a certain condition, equal to the difference calculated by subtracting the product of the negative part ... and the lower derivative of . at the whole set with respect to . from the product of the positive part .. and the upper derivative of . at . with respect to ..
34#
發(fā)表于 2025-3-27 12:56:49 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:07:09 | 只看該作者
Fuzzy Stochastic Integral Equations Driven by Martingales,l and a notion of fuzzy stochastic trajectory integral with respect to martingale. Then we use these integrals in a formulation of fuzzy stochastic integral equations. We investigate the existence and uniqueness of solution to such the equations.
37#
發(fā)表于 2025-3-27 23:31:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:41:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乌兰浩特市| 唐山市| 甘洛县| 桦南县| 瓮安县| 江阴市| 习水县| 莱芜市| 长岭县| 房山区| 政和县| 勃利县| 科技| 西平县| 高陵县| 屏边| 镇平县| 湄潭县| 湖口县| 西平县| 乌兰察布市| 商洛市| 赤城县| 昌宁县| 涟源市| 鄱阳县| 香港| 灵台县| 黔西县| 通辽市| 白朗县| 广饶县| 和林格尔县| 两当县| 虎林市| 阿拉善左旗| 太原市| 随州市| 富民县| 元朗区| 姜堰市|