找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Ill-posed Problems of Monotone Type; YAKOV ALBER,IRINA RYAZANTSEVA Book 20061st edition Springer Science+Business Media B.V. 200

[復(fù)制鏈接]
樓主: 歸納
11#
發(fā)表于 2025-3-23 11:06:53 | 只看該作者
12#
發(fā)表于 2025-3-23 16:30:24 | 只看該作者
13#
發(fā)表于 2025-3-23 18:41:59 | 只看該作者
INTRODUCTION INTO THE THEORY OF MONOTONE AND ACCRETIVE OPERATORS, {xn} ? . to x ∈ X means that ∥x. ?x∥ → 0 as n→∞. In this case, x is a (strong) limit point of the sequence {x.}. If {x.} converges strongly to x ∈ X then 1) any subsequence {x.} ? {x.} also converges to the same point, 2) the sequence {∥xn ? ξ∥} is bounded for any ξ ∈ X.
14#
發(fā)表于 2025-3-23 22:44:12 | 只看該作者
PARAMETERIZATION OF REGULARIZATION METHODS,nt for the operator regularization methods to be convergent to solutions of monotone and accretive operator equations. However, such a wide choice of parameters does not possess the regularizing properties in the sense of De.nition 5 (see Preface). Our aim in this chapter is to indicate the ways to
15#
發(fā)表于 2025-3-24 05:04:05 | 只看該作者
978-90-481-7122-4Springer Science+Business Media B.V. 2006
16#
發(fā)表于 2025-3-24 08:22:25 | 只看該作者
INTRODUCTION INTO THE THEORY OF MONOTONE AND ACCRETIVE OPERATORS, {xn} ? . to x ∈ X means that ∥x. ?x∥ → 0 as n→∞. In this case, x is a (strong) limit point of the sequence {x.}. If {x.} converges strongly to x ∈ X then 1) any subsequence {x.} ? {x.} also converges to the same point, 2) the sequence {∥xn ? ξ∥} is bounded for any ξ ∈ X.
17#
發(fā)表于 2025-3-24 12:15:16 | 只看該作者
Book 20061st editionces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis...
18#
發(fā)表于 2025-3-24 16:11:29 | 只看該作者
19#
發(fā)表于 2025-3-24 20:14:10 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:12 | 只看該作者
REGULARIZATION OF VARIATIONAL INEQUALITIES,1. Let . be an E-space, .. be a strictly convex space, . : . → 2.. be a maximal monotone operator with domain D(A), Ω ? .(.) be a convex closed subset in .. Let either
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦安县| 肥西县| 万全县| 肇源县| 田阳县| 双流县| 滦平县| 湖北省| 夏河县| 乐业县| 霍城县| 上虞市| 尉犁县| 临清市| 吉木萨尔县| 崇信县| 文登市| 阿拉善右旗| 商河县| 贵港市| 裕民县| 阿城市| 东乡族自治县| 西吉县| 甘谷县| 芦溪县| 汉沽区| 天镇县| 措美县| 铜陵市| 广昌县| 咸宁市| 白银市| 漳浦县| 泰安市| 朔州市| 岳普湖县| 聂荣县| 南丰县| 上饶县| 贵南县|