找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations; A Volume of Advances Sergio Albeverio,Michael Demuth,Bert-Wol

[復(fù)制鏈接]
樓主: 珍愛
11#
發(fā)表于 2025-3-23 13:16:38 | 只看該作者
12#
發(fā)表于 2025-3-23 16:50:53 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:30 | 只看該作者
Local Solutions to Quasi-linear Weakly Hyperbolic Differential Equations,as the sharp Levi conditions of .. type are formulated by means of certain weight functions. For Cauchy problems to such quasi-linear weakly hyperbolic equations, the following subjects are studied: local existence of solutions in Sobolev spaces and .., a blow-up criterion, domains of dependence, an
14#
發(fā)表于 2025-3-24 00:57:17 | 只看該作者
15#
發(fā)表于 2025-3-24 02:50:45 | 只看該作者
16#
發(fā)表于 2025-3-24 09:28:01 | 只看該作者
Domain Perturbations and Capacity in General Hilbert Spaces and Applications to Spectral Theory, be a motivation for investigating and estimating the bottom eigenvalue. The main role is played by the Laplacian because this is one of the most important self-adjoint operators in mathematical physics as it plays a fundamental role in quantum mechanics, theory of heat, theory of vibrations and oth
17#
發(fā)表于 2025-3-24 11:30:12 | 只看該作者
An Interpolation Family between Gabor and Wavelet Transformations,ordoba-Fefferman results (see [.]) and to define a differential calculus at the first order. This interpolation family is based on the representation through translated and modulated versions of an analyzing function, with the additional property that this family is naturally localized in paraboloid
18#
發(fā)表于 2025-3-24 18:34:36 | 只看該作者
,From Wave to Klein—Gordon Type Decay Rates,oved. In these cases the solution has a Floquet behavior. More precisely, one can show that the energy cannot be estimated from above by time-dependent functions with a suitable growth order if . tends to infinity.
19#
發(fā)表于 2025-3-24 22:25:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:11:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚志市| 晋江市| 读书| 武山县| 贵德县| 舒兰市| 枝江市| 科技| 正蓝旗| 达拉特旗| 仙居县| 万安县| 株洲县| 元谋县| 墨玉县| 汉寿县| 临澧县| 成武县| 始兴县| 长岛县| 基隆市| 合肥市| 文安县| 黄陵县| 秭归县| 镇沅| 楚雄市| 建平县| 九龙坡区| 宁海县| 德昌县| 塔河县| 淄博市| 祁连县| 化隆| 富锦市| 新津县| 长武县| 锦州市| 黄浦区| 阳原县|