找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution and Chaotic Phenomena; Giovanni Gallavotti,Paul F. Zweifel Book 1988 Plenum Press, New York 1988 Renormalization group

[復(fù)制鏈接]
樓主: culinary
51#
發(fā)表于 2025-3-30 11:18:41 | 只看該作者
Nekhoroshev-Like Results for Hamiltonian Dynamical Systemsbility of motions in nearly-integrable Hamiltonian systems, and to show how the basic ideas and techniques entering this theorem can be extended to study some other dynamical systems, which are quite relevant for physics, but are not close to integrable ones.
52#
發(fā)表于 2025-3-30 14:10:09 | 只看該作者
Relevance of Exponentially Large Time Scales in Practical Applications: Effective Fractal Dimensions time scales rigorously introduced by recent results of classical perturbation theory. The possible relevance for the problem of comparing theoretical previsions with experimental results in statistical models is pointed out.
53#
發(fā)表于 2025-3-30 18:53:03 | 只看該作者
Numerical Results from Truncated Navier-Stokes Equationspriate parameters he found, very close together, a torus, a pseudo-periodic orbit of period 29 and a strange attractor. The numerical procedures were more-or-less standard, involving Newton’s method and iteration; the results were exciting.
54#
發(fā)表于 2025-3-30 22:30:28 | 只看該作者
A Simple and Compact Presentation of Birkhoff Seriestors yields a compact expression, which actually is a formal summation of the recurrence formulas usually obtained for the normal form of a quasi-integrable hamiltonian..Talk given at the school: “Non Linear Evolution and Chaotic Phenomena”-Noto, June 87
55#
發(fā)表于 2025-3-31 01:38:31 | 只看該作者
56#
發(fā)表于 2025-3-31 07:15:49 | 只看該作者
57#
發(fā)表于 2025-3-31 12:48:22 | 只看該作者
Quantum Mechanics and Chaosion. This type of motion is characterized by exponential instability of almost all orbits with respect to initial conditions. In turns this instability leads to loss of memory of initial conditions, decay of correlations and approach to statistical equilibrium.
58#
發(fā)表于 2025-3-31 13:49:13 | 只看該作者
59#
發(fā)表于 2025-3-31 20:39:34 | 只看該作者
60#
發(fā)表于 2025-4-1 01:16:48 | 只看該作者
NATO Science Series B:http://image.papertrans.cn/n/image/667491.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 10:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏邑县| 黄陵县| 大埔县| 株洲县| 阳东县| 竹北市| 石嘴山市| 涞源县| 和林格尔县| 名山县| 万宁市| 柘城县| 盖州市| 阜康市| 蓝山县| 长泰县| 固阳县| 囊谦县| 濉溪县| 乡城县| 威远县| 平定县| 拜城县| 会昌县| 嘉定区| 山阳县| 安溪县| 河源市| 宾川县| 廊坊市| 旌德县| 施甸县| 玉环县| 德昌县| 准格尔旗| 旺苍县| 石阡县| 格尔木市| 宣城市| 利津县| 新安县|