找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution and Chaotic Phenomena; Giovanni Gallavotti,Paul F. Zweifel Book 1988 Plenum Press, New York 1988 Renormalization group

[復(fù)制鏈接]
樓主: culinary
31#
發(fā)表于 2025-3-26 21:54:45 | 只看該作者
Differentiable Structures on Fractal Like Sets, Determined by Intrinsic Scaling Functions on Dual Care records the fine scale geometrical structure. We will discuss two examples from the theory of one dimensional smooth dynamical systems, namely Cantor sets dynamically defined by i) folding maps on the boundary of chaos,and by ii) smooth expanding maps.
32#
發(fā)表于 2025-3-27 01:31:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:43 | 只看該作者
Relaxation Times and the Foundations of Classical Statistical Mechanics in the Light of Modern Pertuditions of metaequilibrium rather than in conditions of equilibrium, an show how a mathematical support to such point of view is given by the recent Nekhoroshev theorem of perturbation theory. As an application, we report the deduction of Planck’s law in a classical context already given by Nernst,
34#
發(fā)表于 2025-3-27 10:26:47 | 只看該作者
Relevance of Exponentially Large Time Scales in Practical Applications: Effective Fractal Dimensions time scales rigorously introduced by recent results of classical perturbation theory. The possible relevance for the problem of comparing theoretical previsions with experimental results in statistical models is pointed out.
35#
發(fā)表于 2025-3-27 15:52:58 | 只看該作者
36#
發(fā)表于 2025-3-27 20:36:58 | 只看該作者
A Simple and Compact Presentation of Birkhoff Seriestors yields a compact expression, which actually is a formal summation of the recurrence formulas usually obtained for the normal form of a quasi-integrable hamiltonian..Talk given at the school: “Non Linear Evolution and Chaotic Phenomena”-Noto, June 87
37#
發(fā)表于 2025-3-28 00:13:00 | 只看該作者
Two Lectures on Chaotic Dynamics in the Solar Systemsolar system are published in Wisdom (1987) .. ., 109 and in somewhat greater detail in Wisdom (1987) . ., in press. Only an abstract of the topics will be given here, with references to the original literature. References to associated literature may be found in the cited references
38#
發(fā)表于 2025-3-28 02:43:29 | 只看該作者
Quantum Chaology of Energy Levels Notes Based on Lectures by Michael Berrya system are known to depend critically on the form of the Hamiltonian and the phase space may support regions of regular and chaotic motion interwoven on all scales.. A natural question is: how does this classical complexity manifest itself in the corresponding quantum system? Sometimes this questi
39#
發(fā)表于 2025-3-28 06:18:51 | 只看該作者
40#
發(fā)表于 2025-3-28 12:09:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 00:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 布拖县| 礼泉县| 宝清县| 巫山县| 东台市| 海阳市| 和田县| 江阴市| 晴隆县| 同德县| 始兴县| 凤阳县| 泰州市| 宜兴市| 青海省| 梅州市| 岳阳县| 安化县| 樟树市| 青龙| 蓬安县| 太白县| 江油市| 蕲春县| 修水县| 江城| 昭通市| 万安县| 镇宁| 太康县| 梨树县| 临海市| 谢通门县| 揭西县| 黑龙江省| 绵竹市| 彰化县| 青田县| 蓬安县| 当雄县|