找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamics and Chaotic Phenomena: An Introduction; Bhimsen K. Shivamoggi Book 2014Latest edition Springer Science+Business Media D

[復(fù)制鏈接]
查看: 55316|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:31:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction
編輯Bhimsen K. Shivamoggi
視頻videohttp://file.papertrans.cn/668/667421/667421.mp4
概述Second edition of a book that has stood its ground and proved its worth over the years.Strong middle ground between elementary undergraduate texts on the one hand and advance level monographs on the o
叢書名稱Fluid Mechanics and Its Applications
圖書封面Titlebook: Nonlinear Dynamics and Chaotic Phenomena: An Introduction;  Bhimsen K. Shivamoggi Book 2014Latest edition Springer Science+Business Media D
描述.This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics ?-- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered around the Korteweg-deVries equation in view of its central place in integrable systems. Then, there is a discussion of the Painlevé property of nonlinear differential equations which seems to provide a test of integrability. Finally, there is a detailed discussion of the application of fractals and multi-fractals to fully-developed turbulence -- a problem whose understanding has been considerably enriched by the application of the concepts and methods of modern nonlinear dynamics. On the application side, there is a special emphasis on some aspects of fluid dynamics and plasma physics reflecting the author’s involvement in these areas of physics. A few exercises have been provided that range from sim
出版日期Book 2014Latest edition
關(guān)鍵詞chaos; nonlinear dynamics
版次2
doihttps://doi.org/10.1007/978-94-007-7094-2
isbn_softcover978-94-017-7711-7
isbn_ebook978-94-007-7094-2Series ISSN 0926-5112 Series E-ISSN 2215-0056
issn_series 0926-5112
copyrightSpringer Science+Business Media Dordrecht 2014
The information of publication is updating

書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction影響因子(影響力)




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction網(wǎng)絡(luò)公開度




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction被引頻次




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction被引頻次學(xué)科排名




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction年度引用




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction年度引用學(xué)科排名




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction讀者反饋




書目名稱Nonlinear Dynamics and Chaotic Phenomena: An Introduction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:10 | 只看該作者
Nonlinear Ordinary Differential Equations,ects (namely, ellipse). However, there is a class of problems like the fluid turbulence which involves growth of objects of irregular shape (fractals and multi-fractals, see Chaps.?. and?.) and cannot be studied via smooth solutions of DE’s.
板凳
發(fā)表于 2025-3-22 00:51:26 | 只看該作者
Integrable Systems,the phase space. A dynamical system is said to be ., if left to itself for long enough, it will pass in an erratic manner close to nearly all the dynamical states compatible with conservation of energy.
地板
發(fā)表于 2025-3-22 05:05:09 | 只看該作者
Book 2014Latest editionstematic discussion of the traditional topics of modern nonlinear dynamics ?-- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a d
5#
發(fā)表于 2025-3-22 09:13:22 | 只看該作者
6#
發(fā)表于 2025-3-22 13:13:30 | 只看該作者
Chaos in Conservative Systems,aotic and regular orbits intricately interspersed among each other (Helleman in Fundamental Problems in Statistical Mechanics, vol.?5, North-Holland, ..) Chaotic motion appears via homoclinic intersections of unstable manifolds, and chaotic orbits fill sets which have a fractal character (see Chap.?.).
7#
發(fā)表于 2025-3-22 20:45:56 | 只看該作者
0926-5112 ation side, there is a special emphasis on some aspects of fluid dynamics and plasma physics reflecting the author’s involvement in these areas of physics. A few exercises have been provided that range from sim978-94-017-7711-7978-94-007-7094-2Series ISSN 0926-5112 Series E-ISSN 2215-0056
8#
發(fā)表于 2025-3-23 00:43:18 | 只看該作者
Bhimsen K. Shivamoggisden; the Palaeontologic Institute and Museum of Humboldt University, Berlin (East Germany); the Institute for Geology and Palaeontology of Martin-Luther-Universit?t, Halle-Wittenberg, Domstra?e 5, East Germany; the British Museum (Natural History), London.
9#
發(fā)表于 2025-3-23 04:44:08 | 只看該作者
Bhimsen K. Shivamoggisden; the Palaeontologic Institute and Museum of Humboldt University, Berlin (East Germany); the Institute for Geology and Palaeontology of Martin-Luther-Universit?t, Halle-Wittenberg, Domstra?e 5, East Germany; the British Museum (Natural History), London.
10#
發(fā)表于 2025-3-23 07:03:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 徐水县| 安乡县| 泸定县| 长岛县| 舒城县| 即墨市| 加查县| 杂多县| 克东县| 射阳县| 蓬溪县| 邵东县| 寻乌县| 赤城县| 木里| 綦江县| 浮梁县| 泸西县| 射阳县| 贵港市| 昌平区| 绥德县| 海阳市| 文山县| 务川| 福安市| 蓝山县| 凤庆县| 蓝田县| 石景山区| 同江市| 洛宁县| 渭源县| 阿克苏市| 东台市| 临西县| 白城市| 日照市| 石首市| 北流市|