找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamics; Integrability, Chaos M. Lakshmanan,S. Rajasekar Textbook 2003 Springer-Verlag Berlin Heidelberg 2003 Analysis.Chaos.Pot

[復(fù)制鏈接]
查看: 54090|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:04:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Dynamics
副標(biāo)題Integrability, Chaos
編輯M. Lakshmanan,S. Rajasekar
視頻videohttp://file.papertrans.cn/668/667414/667414.mp4
概述Covers all aspects of nonlinear dynamics in a unified and comprehensive way.Numerous examples and exercises will help the student to assimilate and apply the techniques presented.Suited to an interdis
叢書名稱Advanced Texts in Physics
圖書封面Titlebook: Nonlinear Dynamics; Integrability, Chaos M. Lakshmanan,S. Rajasekar Textbook 2003 Springer-Verlag Berlin Heidelberg 2003 Analysis.Chaos.Pot
描述Integrability, chaos and patterns are three of the most important concepts in nonlinear dynamics. These are covered in this book from fundamentals to recent developments. The book presents a self-contained treatment of the subject to suit the needs of students, teachers and researchers in physics, mathematics, engineering and applied sciences who wish to gain a broad knowledge of nonlinear dynamics. It describes fundamental concepts, theoretical procedures, experimental and numerical techniques and technological applications of nonlinear dynamics. Numerous examples and problems are included to facilitate the understanding of the concepts and procedures described. In addition to 16 chapters of main material, the book contains 10 appendices which present in-depth mathematical formulations involved in the analysis of various nonlinear systems.
出版日期Textbook 2003
關(guān)鍵詞Analysis; Chaos; Potential; Schr?dinger equation; Soliton; construction; direct scattering problem; inverse
版次1
doihttps://doi.org/10.1007/978-3-642-55688-3
isbn_softcover978-3-642-62872-6
isbn_ebook978-3-642-55688-3Series ISSN 1439-2674
issn_series 1439-2674
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書目名稱Nonlinear Dynamics影響因子(影響力)




書目名稱Nonlinear Dynamics影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Dynamics網(wǎng)絡(luò)公開度




書目名稱Nonlinear Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Dynamics被引頻次




書目名稱Nonlinear Dynamics被引頻次學(xué)科排名




書目名稱Nonlinear Dynamics年度引用




書目名稱Nonlinear Dynamics年度引用學(xué)科排名




書目名稱Nonlinear Dynamics讀者反饋




書目名稱Nonlinear Dynamics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:31:01 | 只看該作者
978-3-642-62872-6Springer-Verlag Berlin Heidelberg 2003
地板
發(fā)表于 2025-3-22 08:38:48 | 只看該作者
Nonlinear Dynamics978-3-642-55688-3Series ISSN 1439-2674
5#
發(fā)表于 2025-3-22 09:50:01 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:49 | 只看該作者
included assessed systems but it is also capable of interpolating into regions which are not well-known. Typical steel databases are confined to the Fe-rich corner. Contrary to that the present compilation cove978-3-540-88142-1Series ISSN 1615-1844 Series E-ISSN 1616-9522
8#
發(fā)表于 2025-3-22 21:26:42 | 只看該作者
9#
發(fā)表于 2025-3-23 01:36:15 | 只看該作者
Qualitative Features,n the vicinity of these equilibrium states? Physically, an equilibrium state is a steady or homogeneous state and it may mean, for example, no motion (rest state) of a pendulum, constant population density of a species and so on. The question is whether the system will continue to remain so for all
10#
發(fā)表于 2025-3-23 09:09:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原平市| 张家口市| 田东县| 平远县| 嘉鱼县| 额尔古纳市| 汝州市| 尼勒克县| 商城县| 会东县| 舞钢市| 监利县| 芒康县| 乌拉特后旗| 桦川县| 日喀则市| 瓦房店市| 五台县| 岐山县| 宜君县| 博兴县| 娱乐| 类乌齐县| 濉溪县| 凤城市| 息烽县| 盱眙县| 靖江市| 贞丰县| 定陶县| 富顺县| 磐安县| 长白| 柘荣县| 韶关市| 时尚| 阜新市| 满洲里市| 吉首市| 白河县| 呼伦贝尔市|