找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamics; A Concise Introducti George Datseris,Ulrich Parlitz Textbook 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: Combat
41#
發(fā)表于 2025-3-28 16:57:00 | 只看該作者
42#
發(fā)表于 2025-3-28 22:01:29 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:16 | 只看該作者
44#
發(fā)表于 2025-3-29 03:52:07 | 只看該作者
Nonlinear Dynamics in Weather and Climate,mate change scenarios. We close the chapter with an interesting presentation of various nonlinear dynamics applications in climate research, using examples paralleling what we’ve learned in this book so far.
45#
發(fā)表于 2025-3-29 07:28:50 | 只看該作者
2192-4791 oncepts illustrated with executable code snippets using openThis concise and up-to-date textbook provides an accessible introduction to the core concepts of nonlinear dynamics as well as its existing and potential applications. The book is aimed at students and researchers in all the diverse fields
46#
發(fā)表于 2025-3-29 12:43:54 | 只看該作者
Non-chaotic Continuous Dynamics,while creating a model, and best practices for “preparing” the model equations for study within dynamical systems theory context. Quasiperiodicity is a typical form of non-chaotic motion in higher-dimensional dynamics, and thus serves as a fitting end to this chapter.
47#
發(fā)表于 2025-3-29 18:26:20 | 只看該作者
48#
發(fā)表于 2025-3-29 20:10:39 | 只看該作者
Bifurcations and Routes to Chaos,mputer is not only possible, but also useful, so it is showcased here as well. We close the chapter with some of the so-called routes to chaos, characteristic ways one can transition from regular behaviour into chaotic behaviour by continuously changing a parameter of a system.
49#
發(fā)表于 2025-3-30 03:35:26 | 只看該作者
Entropy and Fractal Dimension,ic dynamical system. Then, we expand on practically using these concepts to define dimensionality of chaotic sets, a concept that is taken further advantage of in following chapters. Because the structure of chaotic sets is intimately linked with fractal geometry, in this chapter we also introduce fractals.
50#
發(fā)表于 2025-3-30 04:31:40 | 只看該作者
Delay Coordinates, this, using delay coordinate embeddings. We particularly focus on successfully applying this tool to real world data, discussing common pitfalls and some nonlinear timeseries analysis techniques based on delay embedding.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临泽县| 白河县| 贡山| 新竹县| 铁力市| 腾冲县| 绿春县| 托克逊县| 哈巴河县| 石阡县| 镇江市| 台中县| 蚌埠市| 琼海市| 万载县| 洛阳市| 高州市| 双鸭山市| 彩票| 华蓥市| 吉林省| 冷水江市| 郎溪县| 且末县| 正蓝旗| 永春县| 松滋市| 鹤壁市| 那坡县| 枣强县| 南平市| 信阳市| 苍溪县| 六盘水市| 商河县| 防城港市| 竹溪县| 鄂伦春自治旗| 平阴县| 吉安市| 安达市|