找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors; Viet-Thanh Pham,Sundarapandian Vaidyanathan,Tomasz Book 2018 Springer

[復(fù)制鏈接]
樓主: 聲音會爆炸
31#
發(fā)表于 2025-3-26 21:53:21 | 只看該作者
Self-Excited Attractors in Jerk Systems: Overview and Numerical Investigation of Chaos Productionmplementations of the proposed systems. The purpose of this chapter is double-fold. First, a survey of several self-excited dissipative chaotic attractors based on jerk-equations is provided. The main categories of the included systems are explained from the viewpoint of nonlinearity type and their
32#
發(fā)表于 2025-3-27 03:22:27 | 只看該作者
33#
發(fā)表于 2025-3-27 06:40:18 | 只看該作者
Chaotic Business Cycles within a Kaldor-Kalecki Frameworkystems (i.e. business cycles) can be explained by the shape of the investment and saving functions which, in turn, are determined by the behaviour of economic agents. In addition it is explained how the model can accommodate those cumulative effects mentioned by Kaldor which may have the effect of t
34#
發(fā)表于 2025-3-27 11:19:26 | 只看該作者
Analysis of Three-Dimensional Autonomous Van der Pol–Duffing Type Oscillator and Its Synchronizationgs to chaotic systems with self-excited attractors. A suitable electronic circuit of the proposed autonomous VdPD type oscillator is designed and its investigations are performed using ORCAD-PSpice software. Orcard-PSpice results show a good agreement with the numerical simulations. Finally, synchro
35#
發(fā)表于 2025-3-27 14:37:47 | 只看該作者
36#
發(fā)表于 2025-3-27 20:24:57 | 只看該作者
An Autonomous Helmholtz Like-Jerk Oscillator: Analysis, Electronic Circuit Realization and Synchroniattractors found in the proposed autonomous Helmholtz like-jerk oscillator are verified by some laboratory experimental measurements. A good qualitative agreement is shown between the numerical simulations and the experimental results. In addition, the synchronization of two identical coupled Helmho
37#
發(fā)表于 2025-3-27 22:14:25 | 只看該作者
38#
發(fā)表于 2025-3-28 03:42:42 | 只看該作者
39#
發(fā)表于 2025-3-28 08:42:42 | 只看該作者
Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors
40#
發(fā)表于 2025-3-28 13:48:38 | 只看該作者
Book 2018 problems in nonlinear dynamical systems..The book provides a valuable reference guide to nonlinear dynamical systems for engineers, researchers, and graduate students, especially those whose work involves mechanics, electrical engineering, and control systems..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉林市| 年辖:市辖区| 满洲里市| 光山县| 军事| 玉树县| 永福县| 通河县| 莒南县| 连江县| 杭锦后旗| 桓仁| 民县| 眉山市| 葫芦岛市| 石屏县| 乌拉特中旗| 股票| 唐海县| 花垣县| 酉阳| 饶河县| 增城市| 濮阳市| 安吉县| 确山县| 绩溪县| 翁源县| 凭祥市| 昭觉县| 柏乡县| 芷江| 张北县| 察隅县| 同心县| 错那县| 堆龙德庆县| 盐源县| 贺州市| 陕西省| 胶南市|