找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dispersive Partial Differential Equations and Inverse Scattering; Peter D. Miller,Peter A. Perry,Catherine Sulem Book 2019 Sprin

[復(fù)制鏈接]
查看: 51676|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:36:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
編輯Peter D. Miller,Peter A. Perry,Catherine Sulem
視頻videohttp://file.papertrans.cn/668/667403/667403.mp4
概述Contains pioneering works that establish the "nonlinear steepest descent" method for solving the Riemann-Hilbert problems at the heart of inverse scattering.Provides an introduction and overview of th
叢書名稱Fields Institute Communications
圖書封面Titlebook: Nonlinear Dispersive Partial Differential Equations and Inverse Scattering;  Peter D. Miller,Peter A. Perry,Catherine Sulem Book 2019 Sprin
描述.This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ?nonlinear Schr?dinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the?Kadomtsev-Petviashvili?II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions..The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral
出版日期Book 2019
關(guān)鍵詞Davey-Stewartson equation; Riemann- Hilbert problems; asymptotic stability; soliton resolution conjectu
版次1
doihttps://doi.org/10.1007/978-1-4939-9806-7
isbn_softcover978-1-4939-9808-1
isbn_ebook978-1-4939-9806-7Series ISSN 1069-5265 Series E-ISSN 2194-1564
issn_series 1069-5265
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2019
The information of publication is updating

書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering影響因子(影響力)




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering網(wǎng)絡(luò)公開度




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering被引頻次




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering被引頻次學(xué)科排名




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering年度引用




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering年度引用學(xué)科排名




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering讀者反饋




書目名稱Nonlinear Dispersive Partial Differential Equations and Inverse Scattering讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:43 | 只看該作者
Book 2019g" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s
板凳
發(fā)表于 2025-3-22 00:54:16 | 只看該作者
地板
發(fā)表于 2025-3-22 05:49:24 | 只看該作者
5#
發(fā)表于 2025-3-22 11:00:58 | 只看該作者
Benjamin-Ono and Intermediate Long Wave Equations: Modeling, IST and PDEsider mainly the Cauchy problem on the whole real line with only a few comments on the periodic case. We will also briefly discuss some close relevant problems in particular the higher order extensions and the two-dimensional (KP like) versions of the BO and ILW equations.
6#
發(fā)表于 2025-3-22 15:25:00 | 只看該作者
Dispersive Asymptotics for Linear and Integrable Equations by the , Steepest Descent Methodhod in detail for the linear and defocusing nonlinear Schr?dinger equations, and show how in the case of the latter it gives sharper asymptotics than previously known under essentially minimal regularity assumptions on initial data.
7#
發(fā)表于 2025-3-22 21:01:29 | 只看該作者
8#
發(fā)表于 2025-3-22 22:43:11 | 只看該作者
9#
發(fā)表于 2025-3-23 03:10:00 | 只看該作者
Inverse Scattering for the Massive Thirring Modelr the spectral parameter at the origin and the other one is suitable for the spectral parameter at infinity. Global solutions to the massive Thirring model are recovered from the reconstruction formulae at the origin and at infinity.
10#
發(fā)表于 2025-3-23 07:10:22 | 只看該作者
Instability of Solitons in the 2d Cubic Zakharov-Kuznetsov Equationhe two dimensional case creates several difficulties and to deal with them, we design a new virial-type quantity, revisit monotonicity properties and, most importantly, develop new pointwise decay estimates, which can be useful in other contexts.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉禾县| 南康市| 城固县| 织金县| 嫩江县| 赤水市| 安国市| 曲松县| 临沭县| 苏州市| 峨边| 都兰县| 商河县| 仁布县| 醴陵市| 房产| 隆化县| 贺兰县| 陇南市| 腾冲县| 灵宝市| 怀宁县| 平乡县| 开阳县| 淅川县| 沧州市| 武夷山市| 呼伦贝尔市| 合作市| 通化县| 贵德县| 剑阁县| 宜城市| 铁岭县| 新晃| 安仁县| 麻阳| 台东县| 德格县| 唐山市| 林甸县|