找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Differential Equations and Dynamical Systems; Ferdinand Verhulst Textbook 1996Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 不能平庸
21#
發(fā)表于 2025-3-25 06:55:58 | 只看該作者
Autonomous equations,alled autonomous. A scalar equation of order . is often written as . in which . = . ., . = 0, 1, . . ., ., . = . In characterising the solutions of autonomous equations we shall use three special sets of solutions: . or ., . and ..
22#
發(fā)表于 2025-3-25 08:59:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:09:54 | 只看該作者
Stability analysis by the direct method,eceding chapter. When linearising one starts off with small perturbations of the equilibrium or periodic solution and one studies the effect of these . perturbations. In the so-called direct method one characterises the solution in a way with respect to stability which is not necessarily local.
24#
發(fā)表于 2025-3-25 19:29:46 | 只看該作者
The method of averaging,osed to the convergent series studied in the preceding chapter; see section 9.2 for the basic concepts and more discussion in Sanders and Verhulst (1985), chapter 2. This asymptotic character of the approximations is more natural in many problems; also the method turns out to be very powerful, it is not restricted to periodic solutions.
25#
發(fā)表于 2025-3-25 21:37:09 | 只看該作者
26#
發(fā)表于 2025-3-26 00:44:32 | 只看該作者
27#
發(fā)表于 2025-3-26 06:10:21 | 只看該作者
Critical points,In section 2.2 we saw that linearisation in a neighbourhood of a critical point of an autonomous system . leads to the equation. with . constant . × .-matrix; in this formulation the critical point has been translated to the origin. We exclude in this chapter the case of a singular matrix ., so..
28#
發(fā)表于 2025-3-26 10:41:35 | 只看該作者
Periodic solutions,The concept of a periodic solution of a differential equation was introduced in section 2.3. We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space.
29#
發(fā)表于 2025-3-26 14:42:46 | 只看該作者
30#
發(fā)表于 2025-3-26 17:22:01 | 只看該作者
Introduction to perturbation theory,This chapter is intended as an introduction for those readers who are not aquainted with the basics of perturbation theory. In that case it serves in preparing for the subsequent chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽库县| 湖南省| 长葛市| 拉萨市| 泉州市| 罗山县| 丹江口市| 武乡县| 信阳市| 张家港市| 青海省| 宁强县| 昌吉市| 岑溪市| 乌审旗| 崇阳县| 香河县| 博乐市| 大石桥市| 内丘县| 通海县| 光泽县| 淮南市| 抚宁县| 东兴市| 仁怀市| 洛南县| 商水县| 汕头市| 泉州市| 寻乌县| 金昌市| 崇信县| 黑山县| 隆回县| 资中县| 赞皇县| 奉新县| 湘阴县| 当阳市| 淳化县|