找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Differential Equations and Dynamical Systems; Ferdinand Verhulst Textbook 1996Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 不能平庸
21#
發(fā)表于 2025-3-25 06:55:58 | 只看該作者
Autonomous equations,alled autonomous. A scalar equation of order . is often written as . in which . = . ., . = 0, 1, . . ., ., . = . In characterising the solutions of autonomous equations we shall use three special sets of solutions: . or ., . and ..
22#
發(fā)表于 2025-3-25 08:59:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:09:54 | 只看該作者
Stability analysis by the direct method,eceding chapter. When linearising one starts off with small perturbations of the equilibrium or periodic solution and one studies the effect of these . perturbations. In the so-called direct method one characterises the solution in a way with respect to stability which is not necessarily local.
24#
發(fā)表于 2025-3-25 19:29:46 | 只看該作者
The method of averaging,osed to the convergent series studied in the preceding chapter; see section 9.2 for the basic concepts and more discussion in Sanders and Verhulst (1985), chapter 2. This asymptotic character of the approximations is more natural in many problems; also the method turns out to be very powerful, it is not restricted to periodic solutions.
25#
發(fā)表于 2025-3-25 21:37:09 | 只看該作者
26#
發(fā)表于 2025-3-26 00:44:32 | 只看該作者
27#
發(fā)表于 2025-3-26 06:10:21 | 只看該作者
Critical points,In section 2.2 we saw that linearisation in a neighbourhood of a critical point of an autonomous system . leads to the equation. with . constant . × .-matrix; in this formulation the critical point has been translated to the origin. We exclude in this chapter the case of a singular matrix ., so..
28#
發(fā)表于 2025-3-26 10:41:35 | 只看該作者
Periodic solutions,The concept of a periodic solution of a differential equation was introduced in section 2.3. We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space.
29#
發(fā)表于 2025-3-26 14:42:46 | 只看該作者
30#
發(fā)表于 2025-3-26 17:22:01 | 只看該作者
Introduction to perturbation theory,This chapter is intended as an introduction for those readers who are not aquainted with the basics of perturbation theory. In that case it serves in preparing for the subsequent chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 河间市| 长泰县| 海丰县| 疏勒县| 资溪县| 九江市| 丰台区| 稷山县| 石林| 麟游县| 丰台区| 古交市| 将乐县| 阳城县| 会同县| 井研县| 门源| 彭水| 桂阳县| 游戏| 吉林省| 库尔勒市| 磐石市| 寿光市| 秦安县| 安徽省| 临湘市| 曲松县| 克山县| 农安县| 齐齐哈尔市| 甘南县| 诸暨市| 凤凰县| 霍山县| 武鸣县| 崇阳县| 融水| 遂川县| 金华市|