找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis, Geometry and Applications; Proceedings of the T Diaraf Seck,Kinvi Kangni,Mouhamed Moustapha Fall Book 2024 The Editor(s

[復(fù)制鏈接]
樓主: negation
11#
發(fā)表于 2025-3-23 11:19:24 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/n/image/667339.jpg
12#
發(fā)表于 2025-3-23 16:13:44 | 只看該作者
https://doi.org/10.1007/978-3-031-52681-7Partial Differential Equations; Geometrical Analysis of Optimal Shapes; Geometric Structures; Analysis;
13#
發(fā)表于 2025-3-23 19:01:42 | 只看該作者
Diaraf Seck,Kinvi Kangni,Mouhamed Moustapha FallFeatures best papers from the NLAGA-BIRS meeting.Contributes towards solving real-world problems.Relates to the Sustainable Development Goals
14#
發(fā)表于 2025-3-23 22:13:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:27:32 | 只看該作者
Quartic Points on ,We determine geometrically the algebraic points of degree 4 in . on the curve with affine equation .. This curve has been studied by O. Sall and had given in Sall (C R Acad Sci Paris Ser I 336:117–120, 2003) a parametrization of cubic points in 2003. In this note we extend the work of O. Sall to points of degree 4 over . using a geometric method.
16#
發(fā)表于 2025-3-24 09:08:50 | 只看該作者
978-3-031-52683-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
17#
發(fā)表于 2025-3-24 12:47:43 | 只看該作者
Nonlinear Analysis, Geometry and Applications978-3-031-52681-7Series ISSN 2297-0215 Series E-ISSN 2297-024X
18#
發(fā)表于 2025-3-24 16:18:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:34:09 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:56 | 只看該作者
Complex Structure on Pseudo-Riemannian Poisson Manifolds,h. Sci. 7(1):37–50, 2013). We introduce the notion of .-structure which give complex structure on Poisson manifold. The notion is a generalisation of almost complex structure on a co-tangent bundle. It’s show that any pseudo-riemannian Poisson manifold is endowed with an .-structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽阳县| 霍城县| 偃师市| 岑溪市| 桐城市| 天台县| 博客| 新津县| 敖汉旗| 天峨县| 察哈| 新泰市| 金溪县| 南宁市| 广宁县| 双桥区| 明溪县| 绵阳市| 岳阳县| 柳州市| 广水市| 枣阳市| 登封市| 台南市| 且末县| 保山市| 洞口县| 宝丰县| 蒲城县| 渝中区| 娄烦县| 凤翔县| 炎陵县| 奇台县| 靖江市| 吉木乃县| 名山县| 元江| 阳朔县| 临沧市| 八宿县|