找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis, Geometry and Applications; Proceedings of the T Diaraf Seck,Kinvi Kangni,Mouhamed Moustapha Fall Book 2024 The Editor(s

[復(fù)制鏈接]
樓主: negation
11#
發(fā)表于 2025-3-23 11:19:24 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/n/image/667339.jpg
12#
發(fā)表于 2025-3-23 16:13:44 | 只看該作者
https://doi.org/10.1007/978-3-031-52681-7Partial Differential Equations; Geometrical Analysis of Optimal Shapes; Geometric Structures; Analysis;
13#
發(fā)表于 2025-3-23 19:01:42 | 只看該作者
Diaraf Seck,Kinvi Kangni,Mouhamed Moustapha FallFeatures best papers from the NLAGA-BIRS meeting.Contributes towards solving real-world problems.Relates to the Sustainable Development Goals
14#
發(fā)表于 2025-3-23 22:13:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:27:32 | 只看該作者
Quartic Points on ,We determine geometrically the algebraic points of degree 4 in . on the curve with affine equation .. This curve has been studied by O. Sall and had given in Sall (C R Acad Sci Paris Ser I 336:117–120, 2003) a parametrization of cubic points in 2003. In this note we extend the work of O. Sall to points of degree 4 over . using a geometric method.
16#
發(fā)表于 2025-3-24 09:08:50 | 只看該作者
978-3-031-52683-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
17#
發(fā)表于 2025-3-24 12:47:43 | 只看該作者
Nonlinear Analysis, Geometry and Applications978-3-031-52681-7Series ISSN 2297-0215 Series E-ISSN 2297-024X
18#
發(fā)表于 2025-3-24 16:18:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:34:09 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:56 | 只看該作者
Complex Structure on Pseudo-Riemannian Poisson Manifolds,h. Sci. 7(1):37–50, 2013). We introduce the notion of .-structure which give complex structure on Poisson manifold. The notion is a generalisation of almost complex structure on a co-tangent bundle. It’s show that any pseudo-riemannian Poisson manifold is endowed with an .-structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄城县| 黎城县| 鄂温| 池州市| 周宁县| 永丰县| 马山县| 平安县| 汾西县| 衡水市| 涞水县| 沧源| 礼泉县| 阳曲县| 民乐县| 雷山县| 临湘市| 江都市| 鸡泽县| 临桂县| 扎赉特旗| 聂拉木县| 广水市| 罗甸县| 高邮市| 青神县| 临安市| 青河县| 株洲县| 台安县| 晋宁县| 汨罗市| 永善县| 阳曲县| 原平市| 枣庄市| 罗城| 长宁区| 柳江县| 平江县| 和政县|