找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis and its Applications to Differential Equations; M. R. Grossinho,M. Ramos,L. Sanchez Book 2001 Birkh?user Boston 2001 BV

[復(fù)制鏈接]
查看: 39480|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:17:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nonlinear Analysis and its Applications to Differential Equations
編輯M. R. Grossinho,M. Ramos,L. Sanchez
視頻videohttp://file.papertrans.cn/668/667328/667328.mp4
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Nonlinear Analysis and its Applications to Differential Equations;  M. R. Grossinho,M. Ramos,L. Sanchez Book 2001 Birkh?user Boston 2001 BV
出版日期Book 2001
關(guān)鍵詞BVP; Boundary value problem; calculus; compactness; differential equation; maximum; maximum principle; odes
版次1
doihttps://doi.org/10.1007/978-1-4612-0191-5
isbn_softcover978-1-4612-6654-9
isbn_ebook978-1-4612-0191-5Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightBirkh?user Boston 2001
The information of publication is updating

書目名稱Nonlinear Analysis and its Applications to Differential Equations影響因子(影響力)




書目名稱Nonlinear Analysis and its Applications to Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Analysis and its Applications to Differential Equations網(wǎng)絡(luò)公開度




書目名稱Nonlinear Analysis and its Applications to Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Analysis and its Applications to Differential Equations被引頻次




書目名稱Nonlinear Analysis and its Applications to Differential Equations被引頻次學(xué)科排名




書目名稱Nonlinear Analysis and its Applications to Differential Equations年度引用




書目名稱Nonlinear Analysis and its Applications to Differential Equations年度引用學(xué)科排名




書目名稱Nonlinear Analysis and its Applications to Differential Equations讀者反饋




書目名稱Nonlinear Analysis and its Applications to Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:48:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:57:14 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:38 | 只看該作者
Bifurcation Theory and Application to Semilinear Problems near the Resonance Parameteraximum principle, and we prove also some new applications about existence of solutions for semilinear elliptic problems near the resonance parameter. Specifically, we consider here the semilinear elliptic boundary value problem.for a bounded domain S2 C RN with sufficiently smooth boundary as.2 and
5#
發(fā)表于 2025-3-22 11:00:49 | 只看該作者
6#
發(fā)表于 2025-3-22 13:06:50 | 只看該作者
Nonlinear Optimal Control Problems for Diffusive Elliptic Equations of Logistic Typeinear reaction-diffusion equations whose equilibrium states originate in the study of problems of the form where Ωis a bounded and regular domain in, u is the species concentration, r is its growth rate, and.represents the crowding effect. On the other hand, the presence of the Laplacian operator Δ
7#
發(fā)表于 2025-3-22 19:27:37 | 只看該作者
8#
發(fā)表于 2025-3-22 23:23:27 | 只看該作者
https://doi.org/10.1007/978-1-4612-0191-5BVP; Boundary value problem; calculus; compactness; differential equation; maximum; maximum principle; odes
9#
發(fā)表于 2025-3-23 04:04:31 | 只看該作者
On the Long-time Behaviour of Solutions to the Navier-Stokes Equations of Compressible FlowLet be a.domain filled with a fluid. We shall assume that the motion of the fluid is characterized by the velocity of the particle moving through at.. Moreover, for each time.,we shall suppose the fluid has a well-defined mass..
10#
發(fā)表于 2025-3-23 08:36:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江陵县| 顺昌县| 凌云县| 乾安县| 宁海县| 登封市| 涡阳县| 宿州市| 冷水江市| 陕西省| 淄博市| 松滋市| 丹东市| 禄丰县| 宣武区| 萨嘎县| 盐亭县| 兴城市| 长子县| 阳江市| 连山| 大同市| 皋兰县| 弋阳县| 游戏| 洪湖市| 合作市| 温州市| 通山县| 平罗县| 兴安盟| 渑池县| 会同县| 新龙县| 怀仁县| 武山县| 临湘市| 安康市| 肃宁县| 灌南县| 广水市|