找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Analysis and Variational Problems; In Honor of George I Panos M. Pardalos,Themistocles M. Rassias,Akhtar A Book 2010 Springer-Ver

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 09:54:32 | 只看該作者
Isometrics in Non-Archimedean Strictly Convex and Strictly 2-Convex 2-Normed SpacesIn this paper, we present a Mazur–Ulam type theorem in non-Archimedean strictly convex 2-normed spaces and present some properties of mappings on non-Archimedean strictly 2-convex 2-normed spaces.
12#
發(fā)表于 2025-3-23 16:19:27 | 只看該作者
The Perturbed Median Principle for Integral Inequalities with ApplicationsIn this paper, a perturbed version of the median principle introduced by the author in [1] is developed. Applications for various Riemann–Stieltjes integral and Lebesgue integral inequalities are also provided.
13#
發(fā)表于 2025-3-23 19:36:44 | 只看該作者
Stability of a Mixed Type Additive, Quadratic, Cubic and Quartic Functional EquationWe find the general solution of the functional equation . in the context of linear spaces. We prove that if a mapping . from a linear space . into a Banach space . satisfies .(0)=0 and . where ε > 0, then there exist a unique additive mapping . a unique quadratic mapping . a unique cubic mapping . and a unique quartic mapping . such that
14#
發(fā)表于 2025-3-23 22:35:35 | 只看該作者
The Stability and Asymptotic Behavior of Quadratic Mappings on Restricted DomainsIn this paper, we investigate the generalized Hyers–Ulam stability problem for quadratic functional equations in several variables, and then obtain an asymptotic behavior of quadratic mappings on restricted domains.
15#
發(fā)表于 2025-3-24 05:05:22 | 只看該作者
16#
發(fā)表于 2025-3-24 10:12:19 | 只看該作者
Fixed Points and Stability of the Cauchy Functional Equation in Lie , ,-AlgebrasUsing the fixed point method, we prove the generalized Hyers–Ulam stability of homomorphisms in ..-algebras and Lie ..-algebras and of derivations on ..-algebras and Lie ..-algebras for the 3-variable Cauchy functional equation.
17#
發(fā)表于 2025-3-24 11:58:20 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:52 | 只看該作者
Compression–Expansion Critical Point Theorems in Conical ShellsWe present compression and expansion type critical point theorems in a conical shell of a Hilbert space identified to its dual. The notion of linking is involved and the compression–expansion boundary conditions are expressed with respect to only one norm.
19#
發(fā)表于 2025-3-24 20:34:23 | 只看該作者
Gronwall Lemma Approach to the Hyers–Ulam–Rassias Stability of an Integral EquationThe aim of this paper is to give some Hyers–Ulam–Rassias stability results for Volterra and Fredholm integral equations. To do these, we shall use some Gronwall lemmas.
20#
發(fā)表于 2025-3-25 01:42:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 盐池县| 玉龙| 开阳县| 潞城市| 简阳市| 彰化市| 莫力| 兰州市| 吴忠市| 武川县| 乌拉特后旗| 乐东| 望谟县| 义马市| 嘉祥县| 科技| 石门县| 西城区| 衡阳县| 林西县| 柘荣县| 肇东市| 余庆县| 兴隆县| 彭州市| 和龙市| 若尔盖县| 南雄市| 颍上县| 阜新| 苏州市| 儋州市| 浪卡子县| 漯河市| 恩施市| 花莲县| 平潭县| 贵港市| 米脂县| 东山县|