找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Iwasawa Main Conjectures over Totally Real Fields; Münster, April 2011 John Coates,Peter Schneider,Otmar Venjakob Conference

[復(fù)制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 11:23:55 | 只看該作者
Congruences Between Abelian ,-Adic Zeta Functions,This article is a reproduction of lectures in the workshop based on Sect. 6 of [Kak10] with a slight change in the notation to make it consistent with previous articles in the volume. Fix an odd prime ..
12#
發(fā)表于 2025-3-23 17:05:19 | 只看該作者
Noncommutative Main Conjectures of Geometric Iwasawa Theory,In this chapter we give a survey on noncommutative main conjectures of Iwasawa theory in a geometric setting, i.e. for separated schemes of finite type over a finite field, as stated and proved by Burns and the author. We will also comment briefly on versions of the main conjecture for function fields.
13#
發(fā)表于 2025-3-23 19:16:13 | 只看該作者
John Coates,Peter Schneider,Otmar VenjakobIncludes a self-contained and simplified proof of Kakde‘s main algebraic result, as well as introductory articles on related topics.Extremely useful for many years to come.Will almost certainly lead t
14#
發(fā)表于 2025-3-23 23:14:39 | 只看該作者
The Group Logarithm Past and Present,ght into its recent use in the construction of an adelic second Chern class for a non-commutative Riemann Roch theorem. The use of the group logarithm in non-commutative Iwasawa theory is discussed elsewherein this volume.
15#
發(fā)表于 2025-3-24 04:01:54 | 只看該作者
16#
發(fā)表于 2025-3-24 08:27:07 | 只看該作者
2194-1009 y useful for many years to come.Will almost certainly lead tThe algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commu
17#
發(fā)表于 2025-3-24 10:59:25 | 只看該作者
Conference proceedings 2013rms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a numb
18#
發(fā)表于 2025-3-24 16:04:46 | 只看該作者
Introduction to the Work of M. Kakde on the Non-commutative Main Conjectures for Totally Real Fielddakov for some very helpful comments which have been included in the present manuscript. In particular, we are very grateful to Greenberg for providing us with a detailed explanation of his observation (Theorem 4.5) that Wiles’ work (Theorems 4.3 and 4.4) on the abelian main conjecture for totally r
19#
發(fā)表于 2025-3-24 20:19:01 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:08 | 只看該作者
Noncommutative Iwasawa Main Conjectures over Totally Real FieldsMünster, April 2011
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武宣县| 景谷| 南木林县| 黎城县| 行唐县| 城市| 怀仁县| 清流县| 西平县| 金平| 长兴县| 富平县| 建平县| 宣恩县| 大荔县| 棋牌| 玉龙| 长泰县| 白玉县| 五台县| 三亚市| 波密县| 房山区| 罗源县| 永州市| 岚皋县| 香河县| 五寨县| 宾川县| 申扎县| 花垣县| 资溪县| 万载县| 阿拉善左旗| 连南| 博客| 克拉玛依市| 莒南县| 界首市| 稷山县| 庆阳市|