找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Integration and Operator Theory; Peter G. Dodds,Ben de Pagter,Fedor A. Sukochev Book 2023 The Editor(s) (if applicable) and

[復制鏈接]
查看: 13737|回復: 35
樓主
發(fā)表于 2025-3-21 18:11:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Noncommutative Integration and Operator Theory
編輯Peter G. Dodds,Ben de Pagter,Fedor A. Sukochev
視頻videohttp://file.papertrans.cn/668/667198/667198.mp4
概述Connects to previous approaches and relates to classical works in the field.Core exploration of noncommutative integration, both for students and for expert mathematicians.Overview on the theory of op
叢書名稱Progress in Mathematics
圖書封面Titlebook: Noncommutative Integration and Operator Theory;  Peter G. Dodds,Ben de Pagter,Fedor A. Sukochev Book 2023 The Editor(s) (if applicable) and
描述The purpose of this monograph is to provide a systematic account of the theory of noncommutative integration in semi-finite von Neumann algebras. It is designed to serve as an introductory graduate level text as well as a basic reference for more established mathematicians with interests in the continually expanding areas of noncommutative analysis and probability. Its origins lie in two apparently distinct areas of mathematical analysis: the theory of operator ideals going back to von Neumann and Schatten and the general theory of rearrangement invariant Banach lattices of measurable functions which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases.
出版日期Book 2023
關鍵詞Noncommutative Integration; Operator Theory; Banach Spaces; von Neumann Algebras; Noncommutative Analysi
版次1
doihttps://doi.org/10.1007/978-3-031-49654-7
isbn_softcover978-3-031-49656-1
isbn_ebook978-3-031-49654-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Noncommutative Integration and Operator Theory影響因子(影響力)




書目名稱Noncommutative Integration and Operator Theory影響因子(影響力)學科排名




書目名稱Noncommutative Integration and Operator Theory網(wǎng)絡公開度




書目名稱Noncommutative Integration and Operator Theory網(wǎng)絡公開度學科排名




書目名稱Noncommutative Integration and Operator Theory被引頻次




書目名稱Noncommutative Integration and Operator Theory被引頻次學科排名




書目名稱Noncommutative Integration and Operator Theory年度引用




書目名稱Noncommutative Integration and Operator Theory年度引用學科排名




書目名稱Noncommutative Integration and Operator Theory讀者反饋




書目名稱Noncommutative Integration and Operator Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:31:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:31:24 | 只看該作者
Book 2023s which has its roots in many areas of classical analysis related to the well-known Lp-spaces. A principal aim, therefore, is to present a general theory which contains each of these motivating areas as special cases.
地板
發(fā)表于 2025-3-22 07:47:38 | 只看該作者
Singular Value Functions, and .-spaces are introduced, together with fundamental convergence theorems. In particular, noncommutative versions of the dominated convergence theorem and Fatou’s lemma are presented. The chapter concludes with a discussion of contractions in the noncommutative pair ..
5#
發(fā)表于 2025-3-22 12:07:27 | 只看該作者
Symmetric Spaces of ,-Measurable Operators,ions, the discussion is specialized to the case of symmetric spaces of .-measurable operators, with particular attention given to the special case that the underlying von Neumann algebra is either non-atomic or atomic with all minimal projections having equal trace.
6#
發(fā)表于 2025-3-22 15:50:09 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:00 | 只看該作者
Noncommutative Integration and Operator Theory978-3-031-49654-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-22 21:31:51 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:42 | 只看該作者
10#
發(fā)表于 2025-3-23 08:15:19 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/n/image/667198.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
哈密市| 加查县| 乐清市| 江川县| 梅州市| 衡山县| 合作市| 夏河县| 云和县| 庄河市| 富蕴县| 惠水县| 重庆市| 丹阳市| 锦屏县| 桃源县| 南涧| 社旗县| 石泉县| 渑池县| 安平县| 永福县| 昌平区| 许昌市| 惠水县| 蒙阴县| 绥棱县| 绵竹市| 新平| 柳河县| 西乡县| 军事| 萝北县| 郁南县| 万源市| 古交市| 施甸县| 湖南省| 昌乐县| 长乐市| 丰镇市|