找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology

[復(fù)制鏈接]
樓主: Lampoon
31#
發(fā)表于 2025-3-26 22:22:11 | 只看該作者
32#
發(fā)表于 2025-3-27 03:31:36 | 只看該作者
33#
發(fā)表于 2025-3-27 08:04:56 | 只看該作者
Summation formulas, from Poisson and Voronoi to the present,ndeed, the general case of (1.2) can be reduced to the special case of . = 0, . = 1, which amounts to the statement that the Fourier series of a periodic function of bounded variation converges pointwise, to the average of its left and right-hand limits.
34#
發(fā)表于 2025-3-27 09:41:27 | 只看該作者
0743-1643 s as a powerful tool.This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie gr
35#
發(fā)表于 2025-3-27 15:54:32 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:54 | 只看該作者
,La formule de Plancherel pour les groupes de Lie presque algébriques réels, semisimple Lie groups..The main ingredients of the proof are:.In order to illustrate the main steps of the proof, we treat the example of the semidirect product of the universal covering of SL.(?) by the three-dimensional Heisenberg group.
37#
發(fā)表于 2025-3-28 00:55:09 | 只看該作者
Intertwining ladder representations for SU(,, ,) into Dolbeault cohomology,es the Dolbeault model into the vector bundle model. By passing through the Fock space realization of the ladder representations, we invert the Penrose transform, and thus intertwine the ladder representations into Dolbeault cohomology.
38#
發(fā)表于 2025-3-28 04:24:19 | 只看該作者
,McKay’s correspondence and characters of finite subgroups of ,(2),aturally as numerators of Poincaré series associated to finite subgroups of SU(2) acting on polynomials in two variables. These polynomials have been the subject of a number of investigations, but their interpretation as characters has apparently not been noticed.
39#
發(fā)表于 2025-3-28 07:45:30 | 只看該作者
40#
發(fā)表于 2025-3-28 10:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 汾西县| 彭山县| 鄂伦春自治旗| 达尔| 泸州市| 新野县| 达孜县| 平南县| 云霄县| 大冶市| 奈曼旗| 嘉义市| 平果县| 石阡县| 房山区| 金乡县| 彩票| 鸡东县| 德昌县| 称多县| 廊坊市| 溧阳市| 怀宁县| 江油市| 云浮市| 黔西| 佳木斯市| 虞城县| 石楼县| 深州市| 大港区| 伊通| 万州区| 四会市| 佛山市| 英德市| 新津县| 林口县| 陆良县| 启东市|